Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-22835
Nature 1993 Feb 11;3616412:549-52. doi: 10.1038/361549a0.
Show Gene links Show Anatomy links

Cloning and expression of apical membrane water channel of rat kidney collecting tubule.

Fushimi K , Uchida S , Hara Y , Hirata Y , Marumo F , Sasaki S .


???displayArticle.abstract???
Concentrating urine is mandatory for most mammals to prevent water loss from the body. Concentrated urine is produced in response to vasopressin by the transepithelial recovery of water from the lumen of the kidney collecting tubule through highly water-permeable membranes. In this nephron segment, vasopressin regulates water permeability by endo- and exocytosis of water channels from or to the apical membrane. CHIP28 is a water channel in red blood cells and the kidney proximal tubule, but it is not expressed in the collecting tubule. Here we report the cloning of the complementary DNA for WCH-CD, a water channel of the apical membrane of the kidney collecting tubule. WCH-CD is 42% identical in amino-acid sequence to CHIP28. WCH-CD transcripts are detected only in the collecting tubule of the kidney. Immunohistochemically, WCH-CD is localized to the apical region of the kidney collecting tubule cells. Expression of WCH-CD in Xenopus oocytes markedly increases osmotic water permeability. The functional expression and the limited localization of WCH-CD to the apical region of the kidney collecting tubule suggest that WCH-CD is the vasopressin-regulated water channel.

???displayArticle.pubmedLink??? 8429910
???displayArticle.link??? Nature


Species referenced: Xenopus
Genes referenced: aqp1 avp