Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-52703
Philos Trans R Soc Lond B Biol Sci 2016 Dec 19;3711710:. doi: 10.1098/rstb.2015.0409.
Show Gene links Show Anatomy links

From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning.

McDowell G , Rajadurai S , Levin M .


???displayArticle.abstract???
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

???displayArticle.pubmedLink??? 27821521
???displayArticle.pmcLink??? PMC5104508
???displayArticle.link??? Philos Trans R Soc Lond B Biol Sci
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis

???displayArticle.disOnts??? visceral heterotaxy
References [+] :
ALPATOV, Specific action of optical isomers of mepacrine upon dextral and sinistral strains of Bacillus mycoides Flügge. 1946, Pubmed