Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-36324
Circulation 2007 Jul 31;1165:463-70. doi: 10.1213/01.ane.0000267336.37735.d7.
Show Gene links Show Anatomy links

Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia.

Nof E , Luria D , Brass D , Marek D , Lahat H , Reznik-Wolf H , Pras E , Dascal N , Eldar M , Glikson M .


???displayArticle.abstract???
BACKGROUND: The hyperpolarization-activated nucleotide-gated channel--HCN4 plays a major role in the diastolic depolarization of sinus atrial node cells. Mutant HCN4 channels have been found to be associated with inherited sinus bradycardia. METHODS AND RESULTS: Sixteen members of a family with sinus bradycardia were evaluated. Evaluation included a clinical questionnaire, 12-lead ECGs, Holter monitoring, echocardiography, and treadmill exercise testing. Eight family members (5 males) were classified as affected. All affected family members were asymptomatic with normal exercise capacity during long-term follow-up. Electrophysiological testing performed on 2 affected family members confirmed significant isolated sinus node dysfunction. Segregation analysis suggested autosomal-dominant inheritance. Direct sequencing of the exons encoding HCN4 revealed a missense mutation, G480R, in the ion channel pore domain in all affected family members. Function analysis, including expression of HCN4 wild-type and G480R in Xenopus oocytes and human embryonic kidney 293 cells, revealed that mutant channels were activated at more negative voltages compared with wild-type channels. Synthesis and expression of the wild-type and mutant HCN4 channel on the plasma membrane tested in human embryonic kidney 293 cells using biotinylation and Western blot analysis demonstrated a reduction in synthesis and a trafficking defect in mutant compared with wild-type channels. CONCLUSIONS: We describe an inherited, autosomal-dominant form of sinus node dysfunction caused by a missense mutation in the HCN4 ion channel pore. Despite its critical location, this mutation carries a favorable prognosis without the need for pacemaker implantation during long-term follow-up.

???displayArticle.pubmedLink??? 17646576
???displayArticle.link??? Circulation


Species referenced: Xenopus
Genes referenced: hcn4