Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16043
Nature 1997 Sep 04;3896646:85-9. doi: 10.1038/38008.
Show Gene links Show Anatomy links

Smad4 and FAST-1 in the assembly of activin-responsive factor.

Chen X , Weisberg E , Fridmacher V , Watanabe M , Naco G , Whitman M .


???displayArticle.abstract???
Members of the TGF-beta superfamily of signalling molecules work by activating transmembrane receptors with phosphorylating activity (serine-threonine kinase receptors); these in turn phosphorylate and activate SMADs, a class of signal transducers. Activins are growth factors that act primarily through Smad2, possibly in partnership with Smad4, which forms heteromeric complexes with different ligand-specific SMADs after activation. In frog embryos, Smad2 participates in an activin-responsive factor (ARF), which then binds to a promoter element of the Mix.2 gene. The principal DNA-binding component of ARF is FAST-1, a transcription factor with a novel winged-helix structure. We now report that Smad4 is present in ARF, and that FAST-1, Smad4 and Smad2 co-immunoprecipitate in a ligand-regulated fashion. We have mapped the site of interaction between FAST-1 and Smad2/Smad4 to a novel carboxy-terminal domain of FAST-1, and find that overexpression of this domain specifically inhibits activin signalling. In a yeast two-hybrid assay, the FAST-1 carboxy terminus interacts with Smad2 but not Smad4. Deletion mutants of the FAST-1 carboxy terminus that still participate in ligand-regulated Smad2 binding no longer associated with Smad4 or ARF. These results indicate that Smad4 stabilizes a ligand-stimulated Smad2-FAST-1 complex as an active DNA-binding factor.

???displayArticle.pubmedLink??? 9288972
???displayArticle.link??? Nature


Species referenced: Xenopus
Genes referenced: foxh1 smad10 smad2 smad4