Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-36270
J Pharmacol Exp Ther 2007 Nov 01;3232:547-54. doi: 10.1124/jpet.107.125336.
Show Gene links Show Anatomy links

The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes.

Oz M , Yang KH , Dinc M , Shippenberg TS .


???displayArticle.abstract???
The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetitive and independent of membrane potential. Coapplication of anandamide with the cannabinoid type 1 (CB(1)) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) (1 microM), the CB(2) receptor antagonist N-[(1S)endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) (1 microM), or pertussis toxin (5 microg/ml) did not alter the inhibitory effect of anandamide, suggesting that known cannabinoid receptors are not involved in anandamide inhibition of K(+) currents. Similarly, neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor indomethacin (5 microM) affected anandamide inhibition of K(+) currents, suggesting that the effects of anandamide are not mediated by its metabolic products. In radioligand binding studies, anandamide inhibited the specific binding of the K(ATP) ligand [(3)H]glibenclamide in the oocyte microsomal fractions, with an IC(50) value of 6.3 +/- 0.4 microM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 microM anandamide. Collectively, these results indicate that cromakalim-activated K(+) currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.

???displayArticle.pubmedLink??? 17682128
???displayArticle.link??? J Pharmacol Exp Ther
???displayArticle.grants??? [+]