Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5764
Eur J Pharmacol 2003 Feb 14;4612-3:79-87. doi: 10.1016/s0014-2999(03)01309-8.
Show Gene links Show Anatomy links

Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors.

Goutman JD , Waxemberg MD , Doñate-Oliver F , Pomata PE , Calvo DJ .


???displayArticle.abstract???
The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl(-) channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in Xenopus laevis oocytes in the micromolar range. alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors differ largely in their sensitivity to benzodiazepines, but they were similarly modulated by different flavonoids. Quercetin produced comparable actions on currents mediated by alpha(4)beta(2) neuronal nicotinic acetylcholine, serotonin 5-HT(3A) and glutamate AMPA/kainate receptors. Sedative and anxiolytic flavonoids, like chrysin or apigenin, failed to potentiate but antagonized alpha(1)beta(1)gamma(2s) GABA(A) receptors. Effects of apigenin and quercetin on alpha(1)beta(1)gamma(2s) GABA(A) receptors were insensitive to the benzodiazepine antagonist flumazenil. Results indicate that mechanism/s underlying the modulation of ionotropic GABA receptors by some flavonoids differs from that described for classic benzodiazepine modulation.

???displayArticle.pubmedLink??? 12586201
???displayArticle.link??? Eur J Pharmacol


Species referenced: Xenopus laevis