Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Proc Natl Acad Sci U S A 2001 Mar 27;987:3861-6. doi: 10.1073/pnas.071586298.
Show Gene links Show Anatomy links

Regulation of eye development by frizzled signaling in Xenopus.

Rasmussen JT , Deardorff MA , Tan C , Rao MS , Klein PS , Vetter ML .

Eye development in both invertebrates and vertebrates is regulated by a network of highly conserved transcription factors. However, it is not known what controls the expression of these factors to regulate early eye formation and whether transmembrane signaling events are involved. Here we establish a role for signaling via a member of the frizzled family of receptors in regulating early eye development. We show that overexpression of Xenopus frizzled 3 (Xfz3), a receptor expressed during normal eye development, functions cell autonomously to promote ectopic eye formation and can perturb endogenous eye development. Ectopic eyes obtained with Xfz3 overexpression have a laminar organization similar to that of endogenous eyes and contain differentiated retinal cell types. Ectopic eye formation is preceded by ectopic expression of transcription factors involved in early eye development, including Pax6, Rx, and Otx2. Conversely, targeted overexpression of a dominant-negative form of Xfz3 (Nxfz3), consisting of the soluble extracellular domain of the receptor, results in suppression of endogenous Pax6, Rx, and Otx2 expression and suppression of endogenous eye development. This effect can be rescued by coexpression of Xfz3. Finally, overexpression of Kermit, a protein that interacts with the C-terminal intracellular domain of Xfz3, also blocks endogenous eye development, suggesting that signaling through Xfz3 or a related receptor is required for normal eye development. In summary, we show that frizzled signaling is both necessary and sufficient to regulate eye development in Xenopus.

PubMed ID: 11274406
PMC ID: PMC31143
Article link: Proc Natl Acad Sci U S A
Grant support: [+]

Species referenced: Xenopus
Genes referenced: fzd3 gipc1 otx2 pax6 rax rho

Article Images: [+] show captions
References [+] :
Acampora, Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. 1995, Pubmed