Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16702
FEBS Lett 1997 Apr 01;4053:337-44.
Show Gene links Show Anatomy links

Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1.

Vergani P , Miosga T , Jarvis SM , Blatt MR .


???displayArticle.abstract???
Gating of the yeast K+ channel encoded by the Saccharomyces cerevisiae gene TOK1, unlike other outward-rectifying K+ channels that have been cloned, is promoted by membrane voltage (inside positive-going) and repressed by extracellular K+. When expressed in Xenopus laevis oocytes, the TOK1p current rectified strongly outward, its activation shifting in parallel with the K+ equilibrium potential when the external K+ concentration ([K+]o) was increased above 3 mM. Analysis of the TOK1p current indicated that two kinetic components contributed to the conductance and the voltage sensitivity of the conductance. By contrast, the [K+]o sensitivity of the current was accommodated entirely within the slow-relaxing component; it was diminished near 1 mM [K+]o, and at submillimolar concentrations the voltage dependence of the TOK1p conductance was insensitive to [K+]o. External Rb+, the K+ channel blockers Cs+ and Ba2+--but not Na+, Ca2+ or Mg2+--substituted for K+ in control of TOK1p activation, indicating a specificity in cation interaction with the TOK1p gate. These and additional results indicate that external K+ acts as a ligand to inactivate the TOK1p channel, and they implicate a gating process mediated by a single cation binding site within the membrane electric field, but distinct from the permeation pathway.

???displayArticle.pubmedLink??? 9108315
???displayArticle.link??? FEBS Lett