Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10015
Plant J 2000 Oct 01;242:139-45. doi: 10.1046/j.1365-313x.2000.00844.x.
Show Gene links Show Anatomy links

Differential expression and regulation of K(+) channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature.

Bauer CS , Hoth S , Haga K , Philippar K , Aoki N , Hedrich R .


???displayArticle.abstract???
UNLABELLED: Recently, two K(+) channel genes, ZMK1 and ZMK2, were isolated from maize coleoptiles. They are expressed in the cortex and vasculature, respectively. Expression in Xenopus oocytes characterized ZMK1 as an inwardly rectifying K(+) channel activated by external acidification, while ZMK2 mediates voltage-independent and proton-inhibited K(+) currents. In search of the related gene products in planta, we applied the patch-clamp technique to protoplasts isolated from the cortex and vasculature of Zea mays coleoptiles and mesocotyls. In the cortex, a 6-8 pS K(+) channel gave rise to inwardly rectifying K(+) currents. Like ZMK1, this channel was activated by apoplastic acidification. In contrast, protoplasts from vascular tissue expressing the sucrose transporter ZmSUT1 were dominated by largely voltage-independent K(+) currents with a single-channel conductance of 22 pS. The pronounced sensitivity to the extracellular protons Ca(2+), Cs(+) and Ba(2+) is reminiscent of ZMK2 properties in oocytes. Thus, the dominant K(+) channels in cortex and vasculature most likely represent the gene products of ZMK1 and ZMK2. Our studies on the ZMK2-like channels represent the first in planta analysis of a K+ channel that shares properties with the AKT3 K(+) channel family. KEYWORDS: K(+) channel, voltage-independent, proton block, maize coleoptile.

???displayArticle.pubmedLink??? 11069689
???displayArticle.link??? Plant J