Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14477
Plant Cell Physiol 1998 Jun 01;396:600-6.
Show Gene links Show Anatomy links

Identification of a K+ channel from potato leaves by functional expression in Xenopus oocytes.

Brandt S , Fisahn J .


???displayArticle.abstract???
Poly(A)+ mRNA was isolated from leaves of potato plants (Solanum tuberosum L. cv. Desiree) according to standard protocols. This poly(A)+ mRNA was injected via glass microcapillaries into oocytes that were surgically removed from the African clawed toad Xenopus laevis. As a control, oocytes were either injected with H2O or remained untreated. Three days after injection the oocytes were analyzed by two electrode voltage clamping. Current voltage analysis revealed that a K+ channel from potato was functionally expressed in injected oocytes. The identity of this K+ channel was confirmed by its substrate specificity and a shift in the reversal potential. In particular, when the outside K+ concentration was increased the reversal potential of poly(A)+ injected oocytes shifted to more positive values. Furthermore, K+ outward currents declined when the outside K+ concentration was raised from 0.1 to 100 mM. Inward currents increased with an elevation of the K+ concentration. Several pharmaceuticals were tested for their potential to block this K+ channel. As a result, the channel was completely blocked by BaCl2. A three state reaction kinetic model was used to simulate the currents through the K+ transport protein as function of the extracellular K+ concentration. In particular, the simulation revealed current voltage relations that exactly matched the measured ones. Saturation of current voltage curves emerged from the simulation as a consequence of high extracellular potassium concentration.

???displayArticle.pubmedLink??? 9697343
???displayArticle.link??? Plant Cell Physiol