Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-29522
J Cell Biol 1984 Nov 01;995:1655-68.
Show Gene links Show Anatomy links

The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance.

Bridgman PC , Reese TS .


???displayArticle.abstract???
Cultured fibroblasts or epithelial cells derived from Xenopus laevis embryos were directly frozen, freeze-substituted by an improved method, and then either critical-point-dried and viewed as whole mounts, or embedded and thin sectioned. In thin regions of these cells, where ice crystal artifacts are absent, the cytoplasm consisted of a dense, highly interconnected meshwork of filaments, embedded in a finely granular ground substance. The meshwork in directly frozen, intact cells was compared with that in cells that were lysed (physically, with detergents, or with filipin), or fixed with glutaraldehyde before freezing. Although filaments tended to be less numerous in lysed cells, their overall organization was the same as that in intact cells. However, fixation with glutaraldehyde before freezing distorted the meshwork to variable degrees depending on the osmolarity of the fixation buffer, and also obscured the granular ground substance which is obvious in directly frozen cells. With optimal preparative methods, the cytoplasm of these directly frozen cells is shown to consist of a cytoskeleton composed of discrete interwoven filaments interconnected by numerous finer filaments and a readily extractable granular matrix which presumably represents aggregations of cytoplasmic proteins.

???displayArticle.pubmedLink??? 6436253
???displayArticle.pmcLink??? PMC2113346

???displayArticle.grants??? [+]


References [+] :
Barlow, Freeze substitution for preservation of ciliated surfaces for scanning electron microscopy. 1979, Pubmed