Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-29580
J Immunol 1984 Sep 01;1333:1436-43.
Show Gene links Show Anatomy links

Isolation and characterization of the third component of complement in the serum of the clawed frog, Xenopus laevis.

Sekizawa A , Fujii T , Katagiri C .


???displayArticle.abstract???
The hemolytic activity against SRBC in the serum of normal Xenopus is dependent on specific antibody and both Ca++ and Mg++, whereas the activity against RRBC is dependent on Mg++ alone. Both of these hemolytic activities disappeared after treatment of the serum with zymosan or with the specific rabbit antiserum against one of the zymosan-binding proteins in Xenopus serum. By using this antiserum as a probe, a complement component (XC) was purified as a single entity from the Xenopus plasma after polyethylene glycol precipitation, DEAE-Sepharose CL-6B, Sepharose CL-6B, and Sephadex G-200 column chromatographies. The XC, contained at 2.3 mg/ml in normal serum, showed an electrophoretic mobility of beta-globulin, with a m.w. of 204,000 (204K) comprising two distinct subunits of 125K and 85K, which are linked with each other by disulfide bonds. The 204K protein exhibited a strong hemolytic activity in association with other components in Xenopus serum. Digestion of 204K protein by trypsin resulted in a specific cleavage of the 125K subunit and a conversion of its immunoelectrophoretic mobility to the anodal side, leaving the 85K subunits intact. The treatment of XC with SDS and urea resulted in the splitting of 125K subunits into 78K and 40K, but this splitting was inhibited upon pretreatment with methylamine, suggesting the presence of a thiol ester bond in the XC. The amino acid composition of the XC revealed a striking resemblance to that of mammalian C3. In all aspects, the 204K protein (XC) is regarded as representing the C3 of Xenopus laevis, which plays a key role in both the classical and alternative hemolytic pathways.

???displayArticle.pubmedLink??? 6747292
???displayArticle.link??? J Immunol


Species referenced: Xenopus laevis
Genes referenced: prss1