Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18941
Cell Adhes Commun 1995 Dec 01;35:419-40. doi: 10.3109/15419069509081296.
Show Gene links Show Anatomy links

Contribution of cadherins to directional cell migration and histogenesis in Xenopus embryos.

Broders F , Thiery JP .


???displayArticle.abstract???
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the beta-catenin.

???displayArticle.pubmedLink??? 8640379
???displayArticle.link??? Cell Adhes Commun