Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15004
J Physiol 1998 Mar 15;507 ( Pt 3)Pt 3:639-52. doi: 10.1111/j.1469-7793.1998.639bs.x.
Show Gene links Show Anatomy links

Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors.

Krishek BJ , Moss SJ , Smart TG .


???displayArticle.abstract???
1. The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from alpha1, beta1, gamma2S and delta types, and by using cultured rat cerebellar granule neurones. 2. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on alpha1beta1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 microM. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. 3. For alpha1beta1delta subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 microM. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 microM) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. 4. The addition of the gamma2S subunit to the alpha1beta1delta construct caused a marked reduction in the potency of Zn2+ (IC50, 615 microM), comparable to that observed with alpha1beta1gamma2S receptors (IC50 639 microM). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. 5. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 microM. 6. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. 7. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on alpha1beta1delta receptors is shared by GABAA receptors on cerebellar granule neurones, which are known to express delta-subunit-containing receptors. This novel mechanism is masked when a gamma2 subunit is incorporated into the receptor complex, revealing further diversity in the response of native GABAA receptors to endogenous cations.

???displayArticle.pubmedLink??? 9508826
???displayArticle.pmcLink??? PMC2230811
???displayArticle.link??? J Physiol


Species referenced: Xenopus laevis
Genes referenced: gabarap

References [+] :
Celentano, Negative modulation of the gamma-aminobutyric acid response by extracellular zinc. 1991, Pubmed