Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7579
J Biol Chem 2002 May 24;27721:18994-9000. doi: 10.1074/jbc.M200410200.
Show Gene links Show Anatomy links

Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels.

Tristani-Firouzi M , Chen J , Sanguinetti MC .


???displayArticle.abstract???
Outward movement of the voltage sensor is coupled to activation in voltage-gated ion channels; however, the precise mechanism and structural basis of this gating event are poorly understood. Potential insight into the coupling mechanism was provided by our previous finding that mutation to Lys of a single residue (Asp(540)) located in the S4-S5 linker endowed HERG (human ether-a-go-go-related gene) K(+) channels with the unusual ability to open in response to membrane depolarization and hyperpolarization in a voltage-dependent manner. We hypothesized that the unusual hyperpolarization-induced gating occurred through an interaction between Lys(540) and the C-terminal end of the S6 domain, the region proposed to form the activation gate. Therefore, we mutated six residues located in this region of S6 (Ile(662)-Tyr(667)) to Ala in D540K HERG channels. Mutation of Arg(665), but not the other five residues, prevented hyperpolarization-dependent reopening of D540K HERG channels. Mutation of Arg(665) to Gln or Asp also prevented reopening. In addition, D540R and D540K/R665K HERG reopened in response to hyperpolarization. Together these findings suggest that a single residue (Arg(665)) in the S6 domain interacts with Lys(540) by electrostatic repulsion to couple voltage sensing to hyperpolarization-dependent opening of D540K HERG K(+) channels. Moreover, our findings suggest that the C-terminal ends of S4 and S6 are in close proximity at hyperpolarized membrane potentials.

???displayArticle.pubmedLink??? 11864984
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: gnao1 kcnh1 kcnh2