Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19876
Development 1995 Apr 01;1214:1041-52.
Show Gene links Show Anatomy links

Disruption of intermediate filament organization leads to structural defects at the intersomite junction in Xenopus myotomal muscle.

Cary RB , Klymkowsky MW .


Abstract
In mature striated muscle, intermediate filaments (IFs) are associated with the periphery of Z-discs and sites of myofibril-membrane attachment. Previously T. Schultheiss, Z. X. Lin, H. Ishikawa, I. Zamir, C. J. Stoeckert and H. Holtzer (1991) J. Cell Biol. 114, 953) reported that the disruption of IF organization in cultured chick myotubes had no detectable effect on muscle cell structure. Cultured muscle is not, however, under the mechanical loads characteristic of muscle in situ. The dorsal myotomal muscle (DMM) of the Xenopus tadpole provides an accessible model system in which to study the effects of mutant IF proteins on an intact, functional muscle. DNAs encoding truncated forms of Xenopus vimentin or desmin were injected into fertilized Xenopus eggs. Embryos were allowed to develop to the tadpole stage and then examined by confocal or electron microscopy. DMM cells containing the truncated IF polypeptides displayed disorganized IF systems. While the alignment of Z-lines appeared unaffected, cells accumulating mutant IF polypeptides displayed abnormal organization at the intersomite junction. Myocyte termini are normally characterized by deep invaginations of the sarcolemma. In myocytes expressing mutated IF polypeptides, these membrane invaginations were reduced or completely absent. Furthermore, the attachment of myofibrils to the junctional membrane was often aberrant or completely disrupted. These results suggest that in active muscle IFs play an important role in the organization and/or stabilization of myofibril-membrane attachment sites.

PubMed ID: 7743920



Species referenced: Xenopus laevis
Genes referenced: myc vim


Article Images: [+] show captions