Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13465
J Cell Physiol 1999 Feb 01;1782:258-66. doi: 10.1002/(SICI)1097-4652(199902)178:2<258::AID-JCP15>3.0.CO;2-D.
Show Gene links Show Anatomy links

Induction of Na+ channel voltage sensitivity in Xenopus oocytes depends on Ca2+ mobilization.

Charpentier G , Kado RT .


???displayArticle.abstract???
An unusual inward current which is slowly elicited in the Xenopus oocyte membrane during sustained depolarization is reportedly carried by Na+. It is thought that Na+ selective channels are in some way induced to become voltage-sensitive by the depolarization. Earlier studies report that the induction process involves a phospholipase C and a protein kinase C as well as calcium ions. The present work investigated the origins of this calcium in the oocyte. We show that injection of the powerful Ca2+ chelator (BAPTA) in the oocyte, before induction of the Na+ channels, prevented the appearance of the Na+ current, confirming an important role for [Ca2+]i. However, in oocytes perfused with Ca2+ -free medium, induction of the channels could still be obtained, indicating that induction did not depend upon the entry of external Ca2+. Downmodulation of Ca2+ release from inositol 1,4,5-trisphosphate (InsP3)-sensitive stores with caffeine and with a low molecular weight heparin resulted in decreased or no Na+ currents. The results are discussed in terms of the contributions from other endogenous calcium-dependent conductances which can influence the Na+ current amplitudes and time courses. The results presented support the idea that intracellular Ca2+ increase principally due to Ca2+ released from InsP3-sensitive stores is needed by the enzyme systems to produce the depolarization-induced activation of the Na+ conductance in the Xenopus oocyte.

???displayArticle.pubmedLink??? 10048590
???displayArticle.link??? J Cell Physiol