Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol 2000 Jun 01;2221:124-34. doi: 10.1006/dbio.2000.9720.
Show Gene links Show Anatomy links

Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach.

Heasman J , Kofron M , Wylie C .

Xenopus embryos develop dorsal/ventral and anterior/posterior axes as a result of the activity of a maternal Xwnt pathway, in which beta-catenin is an essential component, acting as a transactivator of transcription of zygotic genes. However, the questions of where and when beta-catenin is required in early embryogenesis have not been addressed directly, because no loss-of-function method has been available. Here we report the use of a novel antisense approach that allows us to target depletion of protein to individual blastomeres. When a "morpholino" oligo complementary to beta-catenin mRNA is injected into early embryos, it depletes beta-catenin protein effectively through the neurula stage. By targeting the oligo to different cleavage blastomeres, we block beta-catenin activity in different areas and at different times. Dorsal vegetal injection at the 2- and 4-cell stages blocks dorsal axis formation and at the 8-cell stage blocks head formation, while A-tier injection at the 32-cell stage causes abnormal cement gland formation. This approach shows the complex involvement of Xwnt pathways in embryonic patterning and offers a rapid method for the functional analysis of both maternal and early zygotic gene products in Xenopus.

PubMed ID: 10885751
Article link: Dev Biol
Grant support: [+]

Species referenced: Xenopus
Genes referenced: ag1 agl cer1 chrd ctnnb1 hhex jup nodal3.1 nodal3.2 nrp1 odc1 otx2 sia1 wnt8a
Morpholinos: ctnnb1 MO1 vangl2 MO1

Article Images: [+] show captions