Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
runx1xenopus   

Too many results?Too few results?

Experiment details for runx1

Genetic control of hematopoietic development in Xenopus and zebrafish.

Genetic control of hematopoietic development in Xenopus and zebrafish.

Gene Clone Species Stages Anatomy
runx1.L laevis NF stage 21 anterior ventral blood island , hemangioblast , myeloid cell

Display additional annotations [+]
  Fig. 1. Ontogeny and hematopoietic potential of the anterior portion of the ventral blood island (aVBI). (A) The aVBI and its precursor, the embryonic hemangioblasts, derive from dorsal blastomeres of the 32-cell stage embryo. (B) Embryonic hemangioblast (red cells) are specified during gastrulation when their mesodermal precursors (blue cells) encounter BMP signalling during their migration from dorsal to ventral. (C) Erythroid (Runx1) and myeloid (SpiB) genes are co-expressed (red arrows) at the hemangioblast stage. (D) Numerous myeloid cells differentiate from the embryonic hemangioblast at tail bud stages. These myeloid cells are highly migratory and initiate migration at stage 22 (24 hpf arrowheads).

Gene Clone Species Stages Anatomy
runx1.L laevis NF stage 39 dorsal aorta , head vasculature

  Fig. 4. Ontogeny of the dorsal aorta (DA) and hematopoietic stem cells (HSCs) in Xenopus. (A) Runx1 expression and HSC emergence is restricted to the DA encompassing the trunk. (B) The DA is anatomically subdivided into paired DA, trunk DA and tail artery. HSCs only emerge in the trunk DA. (C) Diagram summarizing the blastomere origins of the anatomical subdivision of the DA.