Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
foxf1xenopus   

Too many results?Too few results?

Experiment details for foxf1

Tseng HT et al. (2004) Assay

Function and regulation of FoxF1 during Xenopus gut development.

Gene Clone Species Stages Anatomy
foxf1.S laevis NF stage 25 mandibular crest , hyoid crest , ventral blood island , lateral plate mesoderm , cranial neural crest , [+]
foxf1.S laevis NF stage 29 and 30 mesoderm , ventral blood island , pharyngeal arch , mandibular arch , hyoid arch , [+]
foxf1.S laevis NF stage 45 hindgut , alimentary system , foregut , splanchnic layer of lateral plate mesoderm , gut epithelium

  Fig. 1. Expression of FoxF1 during Xenopus development. (A,B) Embryos are shown with anterior to the left and dorsal to the top. (A) Whole-mount in-situ hybridization of a FoxF1 probe to a stage-25 embryo. FoxF1 expression is present in the neural crest-derived structures of the head and in the lateral plate mesoderm. At stage 30 the expression of FoxF1 intensifies and is also present in the ventral mesoderm (B). Letters with lines in (B) indicate the position of sections in (C,D). (C) Section through the head, branchial arches, and heart regions shows the lack of FoxF1 expression in the heart. (D) Section through the mid-trunk region of the embryo shows expression in the lateral plate mesoderm. (E) Ventral view of whole-mount in-situ hybridization of a stage-45 embryo shows FoxF1 expression in the gut. (F) Transverse section through the embryo shown in (E) demonstrates that FoxF1 transcripts are present in the splanchnic mesoderm (arrow).

Gene Clone Species Stages Anatomy
foxf1.L laevis NF stage 35 and 36 mesoderm , pharyngeal arch , mandibular arch , hyoid arch , branchial arch , [+]

Display additional annotations [+]
  Fig. 4. Abnormal expression of Xbap in FoxF1 knockdown embryos. (A,B) Whole-mount in-situ hybridization showing Xbap [nkx3-2] expression on both sides of a CoMo-injected stage 35/36 embryo. A line with a letter in (A) indicates the position of the section in (I). (C,D) Whole-mount in-situ hybridization of Xbap RNA to a FoxF1Mo-injected stage 35/36 embryo. Xbap expression is present on the uninjected side (C) but is absent on the injected side (D). A line with a letter in (C) indicates the position of the section in (J). (E,F) Whole-mount in-situ hybridization showing FoxF1 expression on both sides of a CoMo-injected stage 35/36 embryo. A line with a letter in (E) indicates the position of the section in (K). (G,H) Whole-mount in-situ hybridization of FoxF1 RNA to a FoxF1Mo-injected stage 35/36 embryo. FoxF1 expression is present on both sides of the embryo. A line with a letter in (G) indicates the position of the section in (L). (I) A section through the embryo in (A) shows that Xbap is expressed in the CoMo-injected (shown as right) side as well as on the uninjected (left). (J) A section through the embryo in (C) shows that Xbap is expressed on the uninjected (left) side of a FoxF1Mo-injected embryo but not on the injected (right) side of a tadpole. (K) A section through an embryo hybridized with FoxF1 RNA shows that the lateral plate mesoderm is present on the CoMo-injected (right) side as well as on the uninjected side (left). (L) A section through an embryo hybridized with FoxF1 RNA shows that the lateral plate mesoderm is present on the FoxF1Mo-injected (right) side as well as on the uninjected side (left). Arrows point to the anterior lateral plate mesoderm.