Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (84) GO Terms (5) Nucleotides (202) Proteins (86) Interactants (487) Wiki
XB-GENEPAGE-485743

Papers associated with vegfa



???displayGene.coCitedPapers???
13 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor., de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT., Science. February 21, 1992; 255 (5047): 989-91.


Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14., Maglione D, Guerriero V, Viglietto G, Ferraro MG, Aprelikova O, Alitalo K, Del Vecchio S, Lei KJ, Chou JY, Persico MG., Oncogene. April 1, 1993; 8 (4): 925-31.


Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium., Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT., Proc Natl Acad Sci U S A. August 15, 1993; 90 (16): 7533-7.


Modulation of cell migration and vessel formation by vascular endothelial growth factor and basic fibroblast growth factor in cultured embryonic heart., Ratajska A, Torry RJ, Kitten GT, Kolker SJ, Tomanek RJ., Dev Dyn. August 1, 1995; 203 (4): 399-407.


Neovascularization of the Xenopus embryo., Cleaver O, Tonissen KF, Saha MS, Krieg PA., Dev Dyn. September 1, 1997; 210 (1): 66-77.   


VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus., Cleaver O, Krieg PA., Development. October 1, 1998; 125 (19): 3905-14.   


What guides early embryonic blood vessel formation?, Weinstein BM., Dev Dyn. May 1, 1999; 215 (1): 2-11.   


Vascular endothelial growth factor and osteopontin in tumor biology., Shijubo N, Uede T, Kon S, Nagata M, Abe S., Crit Rev Oncog. January 1, 2000; 11 (2): 135-46.


Endoderm patterning by the notochord: development of the hypochord in Xenopus., Cleaver O, Seufert DW, Krieg PA., Development. February 1, 2000; 127 (4): 869-79.   


Determination of cell adhesion sites of neuropilin-1., Shimizu M, Murakami Y, Suto F, Fujisawa H., J Cell Biol. March 20, 2000; 148 (6): 1283-93.   


Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor., Hyder SM, Nawaz Z, Chiappetta C, Stancel GM., Cancer Res. June 15, 2000; 60 (12): 3183-90.


Distinct origins of adult and embryonic blood in Xenopus., Ciau-Uitz A, Walmsley M, Patient R., Cell. September 15, 2000; 102 (6): 787-96.   


Neuropilin in the midst of cell migration and retraction., Soker S., Int J Biochem Cell Biol. April 1, 2001; 33 (4): 433-7.


Notochord patterning of the endoderm., Cleaver O, Krieg PA., Dev Biol. June 1, 2001; 234 (1): 1-12.   


Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen., Wei YQ, Huang MJ, Yang L, Zhao X, Tian L, Lu Y, Shu JM, Lu CJ, Niu T, Kang B, Mao YQ, Liu F, Wen YJ, Lei S, Luo F, Zhou LQ, Peng F, Jiang Y, Liu JY, Zhou H, Wang QR, He QM, Xiao F, Lou YY, Xie XJ, Li Q, Wu Y, Ding ZY, Hu B, Hu M, Zhang W., Proc Natl Acad Sci U S A. September 25, 2001; 98 (20): 11545-50.


From the discovery of neuropilin to the determination of its adhesion sites., Fujisawa H., Adv Exp Med Biol. January 1, 2002; 515 1-12.


Adsorption and release properties of growth factors from biodegradable implants., Ziegler J, Mayr-Wohlfart U, Kessler S, Breitig D, Günther KP., J Biomed Mater Res. March 5, 2002; 59 (3): 422-8.


Endostatin is a potential inhibitor of Wnt signaling., Hanai J, Gloy J, Karumanchi SA, Kale S, Tang J, Hu G, Chan B, Ramchandran R, Jha V, Sukhatme VP, Sokol S., J Cell Biol. August 5, 2002; 158 (3): 529-39.   


Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism., Svensson B, Peters M, König HG, Poppe M, Levkau B, Rothermundt M, Arolt V, Kögel D, Prehn JH., J Cereb Blood Flow Metab. October 1, 2002; 22 (10): 1170-5.


Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis., Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT., Genes Dev. October 15, 2002; 16 (20): 2684-98.


VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis., Tjwa M, Luttun A, Autiero M, Carmeliet P., Cell Tissue Res. October 1, 2003; 314 (1): 5-14.


Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival., Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, Bouillon R, Carmeliet G., J Clin Invest. January 1, 2004; 113 (2): 188-99.


Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors., Cheng SK, Olale F, Brivanlou AH, Schier AF., PLoS Biol. February 1, 2004; 2 (2): E30.   


Modulation of activin A-induced differentiation in vitro by vascular endothelial growth factor in Xenopus presumptive ectodermal cells., Yoshida S, Furue M, Nagamine K, Abe T, Fukui Y, Myoishi Y, Fujii T, Okamoto T, Taketani Y, Asashima M., In Vitro Cell Dev Biol Anim. January 1, 2005; 41 (3-4): 104-10.


[Prokaryotic expression, purification and identification of recombinant Xenopus laevis and mouse vascular endothelial growth factors]., Niu T, Liu T, Jia YQ, Yang L, Tian L, Liu JY, Hu B, Wu Y, Wei YQ., Sichuan Da Xue Xue Bao Yi Xue Ban. May 1, 2005; 36 (3): 301-4.


Induction of cells expressing vascular endothelium markers from undifferentiated Xenopus presumptive ectoderm by co-treatment with activin and angiopoietin-2., Nagamine K, Furue M, Fukui A, Asashima M., Zoolog Sci. July 1, 2005; 22 (7): 755-61.


[Antitumor effect of recombinant Xenopus laevis vascular endothelial growth factor (VEGF) as a vaccine combined with adriamycin on EL4 lymphoma in mice]., Niu T, Liu T, Jia YQ, Liu JY, Wu Y, Hu B, Tian L, Yang L, Kan B, Wei YQ., Sichuan Da Xue Xue Bao Yi Xue Ban. September 1, 2005; 36 (5): 661-4, 675.


A genetic Xenopus laevis tadpole model to study lymphangiogenesis., Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Héligon C, Terclavers S, Ciesiolka M, Kälin R, Man WY, Senn I, Wyns S, Lupu F, Brändli A, Vleminckx K, Vleminckx K, Collen D, Dewerchin M, Conway EM, Moons L, Jain RK, Carmeliet P., Nat Med. September 1, 2005; 11 (9): 998-1004.


Cellular and molecular analyses of vascular tube and lumen formation in zebrafish., Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY., Development. December 1, 2005; 132 (23): 5199-209.


VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain., Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Bréant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL., Nat Neurosci. March 1, 2006; 9 (3): 340-8.


The effect of VEGF on blood vessels and blood cells during Xenopus development., Koibuchi N, Taniyama Y, Nagao K, Ogihara T, Kaneda Y, Morishita R., Biochem Biophys Res Commun. May 26, 2006; 344 (1): 339-45.   


The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development., Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T., Dev Biol. June 15, 2006; 294 (2): 458-70.   


Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo., Cox CM, D'Agostino SL, Miller MK, Heimark RL, Krieg PA., Dev Biol. August 1, 2006; 296 (1): 177-89.   


Xenopus Dab2 is required for embryonic angiogenesis., Cheong SM, Choi SC, Han JK., BMC Dev Biol. December 19, 2006; 6 63.   


Kidney development and gene expression in the HIF2alpha knockout mouse., Steenhard BM, Freeburg PB, Isom K, Stroganova L, Borza DB, Hudson BG, St John PL, Zelenchuk A, Abrahamson DR., Dev Dyn. April 1, 2007; 236 (4): 1115-25.   


Molecular mechanisms of lymphatic vascular development., Mäkinen T, Norrmén C, Petrova TV., Cell Mol Life Sci. August 1, 2007; 64 (15): 1915-29.


Constitutive over-expression of VEGF results in reduced expression of Hand-1 during cardiac development in Xenopus., Nagao K, Taniyama Y, Koibuchi N, Morishita R., Biochem Biophys Res Commun. August 3, 2007; 359 (3): 431-7.   


A general definition and nomenclature for alternative splicing events., Sammeth M, Foissac S, Guigó R., PLoS Comput Biol. August 8, 2008; 4 (8): e1000147.   


Role of VEGF-D and VEGFR-3 in developmental lymphangiogenesis, a chemicogenetic study in Xenopus tadpoles., Ny A, Koch M, Vandevelde W, Schneider M, Fischer C, Diez-Juan A, Neven E, Geudens I, Maity S, Moons L, Plaisance S, Lambrechts D, Carmeliet P, Dewerchin M., Blood. September 1, 2008; 112 (5): 1740-9.


Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function., Kozak M., Gene. November 1, 2008; 423 (2): 108-15.


The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development., Kazanskaya O, Ohkawara B, Heroult M, Wu W, Maltry N, Augustin HG, Niehrs C., Development. November 1, 2008; 135 (22): 3655-64.   


Kruppel-like factor 2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development., Meadows SM, Salanga MC, Krieg PA., Development. April 1, 2009; 136 (7): 1115-25.   


FHL-2 suppresses VEGF-induced phosphatidylinositol 3-kinase/Akt activation via interaction with sphingosine kinase-1., Hayashi H, Nakagami H, Takami Y, Koriyama H, Mori M, Tamai K, Sun J, Nagao K, Morishita R, Kaneda Y., Arterioscler Thromb Vasc Biol. June 1, 2009; 29 (6): 909-14.


An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis., Kälin RE, Bänziger-Tobler NE, Detmar M, Brändli AW., Blood. July 30, 2009; 114 (5): 1110-22.


VEGF-D deficiency in mice does not affect embryonic or postnatal lymphangiogenesis but reduces lymphatic metastasis., Koch M, Dettori D, Van Nuffelen A, Souffreau J, Marconcini L, Wallays G, Moons L, Bruyère F, Oliviero S, Noel A, Foidart JM, Carmeliet P, Dewerchin M., J Pathol. November 1, 2009; 219 (3): 356-64.


XRASGRP2 is essential for blood vessel formation during Xenopus development., Suzuki K, Takahashi S, Haramoto Y, Onuma Y, Nagamine K, Okabayashi K, Hashizume K, Iwanaka T, Asashima M., Int J Dev Biol. January 1, 2010; 54 (4): 609-15.   


Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling., Ciau-Uitz A, Pinheiro P, Gupta R, Enver T, Patient R., Dev Cell. April 20, 2010; 18 (4): 569-78.   


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT, Zhang B, Cerqueira DM, Tran U, Wessely O., Development. June 1, 2010; 137 (11): 1863-73.   


Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm., Deimling SJ, Drysdale TA., Mech Dev. January 1, 2011; 128 (7-10): 327-41.   


Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice., Xiang W, Ke Z, Zhang Y, Zhang Y, Cheng GH, Irwan ID, Sulochana KN, Potturi P, Wang Z, Yang H, Wang J, Zhuo L, Kini RM, Ge R., J Cell Mol Med. February 1, 2011; 15 (2): 359-74.   

???pagination.result.page??? 1 2 ???pagination.result.next???