Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (52) GO Terms (11) Nucleotides (187) Proteins (91) Interactants (809) Wiki
XB-GENEPAGE-479867

Papers associated with tp63



???displayGene.coCitedPapers???
5 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs., Maraia R, Zasloff M, Plotz P, Adeniyi-Jones S., Mol Cell Biol. October 1, 1988; 8 (10): 4433-40.


p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities., Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, Andrews NC, Caput D, McKeon F., Mol Cell. September 1, 1998; 2 (3): 305-16.


Identification of a novel 81-kDa component of the Xenopus origin recognition complex., Carpenter PB, Dunphy WG., J Biol Chem. September 18, 1998; 273 (38): 24891-7.


Xenopus p63 expression in early ectoderm and neurectoderm., Lu P, Barad M, Vize PD., Mech Dev. April 1, 2001; 102 (1-2): 275-8.              


Monoclonal antibodies raised against Xenopus p53 interact with human p73., Le Bras M, Delattre V, Bensaad K, Blandino G, Soussi T., Oncogene. February 14, 2002; 21 (8): 1304-8.


REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species., Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA., Mol Cell. November 1, 2002; 10 (5): 995-1005.


Evolutionarily conserved expression pattern and trans-regulating activity of Xenopus p51/p63., Tomimori Y, Katoh I, Kurata S, Okuyama T, Kamiyama R, Ikawa Y., Biochem Biophys Res Commun. January 9, 2004; 313 (2): 230-6.            


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


TGF-beta signaling is required for multiple processes during Xenopus tail regeneration., Ho DM, Whitman M., Dev Biol. March 1, 2008; 315 (1): 203-16.                  


TRIQK, a novel family of small proteins localized to the endoplasmic reticulum membrane, is conserved across vertebrates., Onuma Y, Watanabe A, Aburatani H, Asashima M, Whitman M., Zoolog Sci. July 1, 2008; 25 (7): 706-13.  


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis., Barton CE, Tahinci E, Barbieri CE, Johnson KN, Hanson AJ, Jernigan KK, Chen TW, Lee E, Pietenpol JA., Dev Biol. May 1, 2009; 329 (1): 130-9.            


p63 antagonizes Wnt-induced transcription., Drewelus I, Göpfert C, Hippel C, Dickmanns A, Damianitsch K, Pieler T, Dobbelstein M., Cell Cycle. February 1, 2010; 9 (3): 580-87.


Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19., Wan X, Ji W, Mei X, Zhou J, Liu JX, Fang C, Xiao W., PLoS One. February 9, 2010; 5 (2): e9118.                  


GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments., van Heeringen SJ, Veenstra GJ., Bioinformatics. January 15, 2011; 27 (2): 270-1.  


Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway., Sirour C, Hidalgo M, Bello V, Buisson N, Darribère T, Moreau N., Mol Biol Cell. August 15, 2011; 22 (16): 2957-69.                      


The analysis of the expression of a novel gene, Xenopus polka dots, which was expressed in the embryonic and larval epidermis during early development., Yoshii S, Yamaguchi M, Oogata Y, Tazaki A, Mochii M, Suzuki S, Kinoshita T., Zoolog Sci. November 1, 2011; 28 (11): 809-16.


Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes., Chen Y, Chen Y, Ding Y, Zhang Z, Wang W, Chen JY, Ueno N, Mao B., J Genet Genomics. December 20, 2011; 38 (12): 577-84.                                                                                                                                                          


Stability of p53 homologs., Brandt T, Kaar JL, Fersht AR, Veprintsev DB., PLoS One. January 1, 2012; 7 (10): e47889.          


ΔNp63 is regulated by BMP4 signaling and is required for early epidermal development in Xenopus., Tríbulo C, Guadalupe Barrionuevo M, Agüero TH, Sánchez SS, Calcaterra NB, Aybar MJ., Dev Dyn. February 1, 2012; 241 (2): 257-69.            


The translational repressor 4E-BP mediates hypoxia-induced defects in myotome cells., Hidalgo M, Le Bouffant R, Bello V, Buisson N, Cormier P, Beaudry M, Darribère T., J Cell Sci. September 1, 2012; 125 (Pt 17): 3989-4000.            


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP., Dev Dyn. February 1, 2013; 242 (2): 164-78.                            


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ, Thomas AG, Henry JJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


The structure and development of Xenopus laevis cornea., Hu W, Haamedi N, Lee J, Kinoshita T, Ohnuma S., Exp Eye Res. November 1, 2013; 116 109-28.                            


Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development., Barrionuevo MG, Aybar MJ, Aybar MJ, Tríbulo C., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.            


Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context., Castillo-Briceno P, Kodjabachian L., Front Zool. February 6, 2014; 11 (1): 9.                


Retinoic acid regulation by CYP26 in vertebrate lens regeneration., Thomas AG, Henry JJ., Dev Biol. February 15, 2014; 386 (2): 291-301.            


Essential roles of epithelial bone morphogenetic protein signaling during prostatic development., Omori A, Miyagawa S, Ogino Y, Harada M, Ishii K, Sugimura Y, Ogino H, Nakagata N, Yamada G., Endocrinology. July 1, 2014; 155 (7): 2534-44.            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Vleminckx K, Wert SE, Zorn AM., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


BMP signalling controls the construction of vertebrate mucociliary epithelia., Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L., Development. July 1, 2015; 142 (13): 2352-63.                        


Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation., Kjolby RAS, Harland RM., Dev Biol. June 15, 2017; 426 (2): 165-175.                                    


Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells., Setiawan M, Tan XW, Goh TW, Hin-Fai Yam G, Mehta JS., Biochem Biophys Res Commun. September 2, 2017; 490 (4): 1381-1388.


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


TRRAP is a central regulator of human multiciliated cell formation., Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB., J Cell Biol. June 4, 2018; 217 (6): 1941-1955.                        


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A, Smialowski P, Rupp RA., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.                          


CDC20B is required for deuterosome-mediated centriole production in multiciliated cells., Revinski DR, Zaragosi LE, Boutin C, Ruiz-Garcia S, Deprez M, Thomé V, Rosnet O, Gay AS, Mercey O, Paquet A, Pons N, Ponzio G, Marcet B, Kodjabachian L, Barbry P., Nat Commun. November 7, 2018; 9 (1): 4668.              


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S, Srnak JA, Perry KJ, Henry JJ., Exp Eye Res. July 1, 2019; 184 107-125.                        


ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia., Haas M, Gómez Vázquez JL, Sun DI, Tran HT, Brislinger M, Tasca A, Shomroni O, Vleminckx K, Vleminckx K, Walentek P., Cell Rep. September 24, 2019; 28 (13): 3338-3352.e6.                              


Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus., Adil MT, Simons CM, Sonam S, Henry JJ., Exp Eye Res. October 1, 2019; 187 107767.                                        


Isl1 Regulation of Nkx2.1 in the Early Foregut Epithelium Is Required for Trachea-Esophageal Separation and Lung Lobation., Kim E, Jiang M, Huang H, Zhang Y, Tjota N, Gao X, Robert J, Gilmore N, Gan L, Que J., Dev Cell. December 16, 2019; 51 (6): 675-683.e4.          


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J., Development. February 5, 2020; 147 (3):                                     


miR-199 plays both positive and negative regulatory roles in Xenopus eye development., Ritter RA, Ulrich CH, Brzezinska BN, Shah VV, Zamora MJ, Kelly LE, El-Hodiri HM, Sater AK., Genesis. March 1, 2020; 58 (3-4): e23354.                        


Model systems for regeneration: Xenopus., Phipps LS, Marshall L, Dorey K, Amaya E., Development. March 19, 2020; 147 (6):           


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S, Chaturvedi P, Rankin SA, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM., Elife. September 7, 2020; 9                           


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.          


Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs., Aztekin C, Hiscock TW, Gurdon J, Jullien J, Marioni J, Simons BD., Development. June 1, 2021; 148 (11):                                             


Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease., Walentek P., Cells Tissues Organs. January 1, 2022; 211 (6): 736-753.


The Splicing Factor PTBP1 Represses TP63 γ Isoform Production in Squamous Cell Carcinoma., Taylor W, Deschamps S, Reboutier D, Paillard L, Méreau A, Audic Y., Cancer Res Commun. December 1, 2022; 2 (12): 1669-1683.                                


A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          

???pagination.result.page??? 1 2 ???pagination.result.next???