Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (261) GO Terms (7) Nucleotides (120) Proteins (54) Interactants (309) Wiki
XB-GENEPAGE-483702

Papers associated with pomc



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH, Maia A, Jenks BG, Roubos EW., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R, Jenks BG, Roubos EW., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells., Kurabuchi S, Tanaka S., Cell Tissue Res. June 1, 1997; 288 (3): 485-96.


Sturgeon proopiomelanocortin has a remnant of gamma-melanotropin., Amemiya Y, Takahashi A, Dores RM, Kawauchi H., Biochem Biophys Res Commun. January 13, 1997; 230 (2): 452-6.


Differential action of secreto-inhibitors on proopiomelanocortin biosynthesis in the intermediate pituitary of Xenopus laevis., Dotman CH, Cruijsen PM, Jenks BG, Roubos EW., Endocrinology. November 1, 1996; 137 (11): 4551-7.


Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor., Van Strien FJ, Roubos EW, Vaudry H, Jenks BG., Endocrinology. October 1, 1996; 137 (10): 4298-307.


Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway., Holthuis JC, Jansen EJ, Martens GJ., J Biol Chem. July 26, 1996; 271 (30): 17755-60.


The neuroendocrine proteins secretogranin II and III are regionally conserved and coordinately expressed with proopiomelanocortin in Xenopus intermediate pituitary., Holthuis JC, Martens GJ., J Neurochem. June 1, 1996; 66 (6): 2248-56.


Occurrence of immunoreactive activin/inhibin beta(B) in gonadotrophs, thyrotrophs, and somatotrophs of the Xenopus pituitary., Uchiyama H, Komazaki S, Asashima M, Kikuyama S., Gen Comp Endocrinol. April 1, 1996; 102 (1): 1-10.        


The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis., Brown DD, Wang Z, Furlow JD, Kanamori A, Schwartzman RA, Remo BF, Pinder A., Proc Natl Acad Sci U S A. March 5, 1996; 93 (5): 1924-9.  


Identification of POMC processing products in single melanotrope cells by matrix-assisted laser desorption/ionization mass spectrometry., van Strien FJ, Jespersen S, van der Greef J, Jenks BG, Roubos EW., FEBS Lett. January 29, 1996; 379 (2): 165-70.


Inhibition of alpha-MSH secretion is associated with increased cyclic-AMP egress from the neurointermediate lobe of Xenopus laevis., Leenders HJ, Jenks BG, Roubos EW., Life Sci. November 17, 1995; 57 (26): 2447-53.


Translocon-associated protein TRAP delta and a novel TRAP-like protein are coordinately expressed with pro-opiomelanocortin in Xenopus intermediate pituitary., Holthuis JC, van Riel MC, Martens GJ., Biochem J. November 15, 1995; 312 ( Pt 1) 205-13.


Biosynthesis and processing of the N-terminal part of proopiomelanocortin in Xenopus laevis: characterization of gamma-MSH peptides., van Strien FJ, Devreese B, Van Beeumen J, Roubos EW, Jenks BG., J Neuroendocrinol. October 1, 1995; 7 (10): 807-15.


Molecular probing of the secretory pathway in peptide hormone-producing cells., Holthuis JC, Jansen EJ, van Riel MC, Martens GJ., J Cell Sci. October 1, 1995; 108 ( Pt 10) 3295-305.


The neuroendocrine chaperone 7B2 can enhance in vitro POMC cleavage by prohormone convertase PC2., Braks JA, Martens GJ., FEBS Lett. September 4, 1995; 371 (2): 154-8.


Processing of the precursors to neurotensin and other bioactive peptides by cathepsin E., Kageyama T, Ichinose M, Yonezawa S., J Biol Chem. August 11, 1995; 270 (32): 19135-40.


The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.


The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels., Scheenen WJ, de Koning HP, Jenks BG, Vaudry H, Roubos EW., J Neuroendocrinol. August 1, 1994; 6 (4): 457-64.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R, González A, Smeets WJ, Scheenen WJ, Roubos EW., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R, Artero C, Fasolo A, Franzoni MF, Ten Donkelaar HJ, Wismans PG, Roubos EW., Neuroscience. July 1, 1994; 61 (2): 411-20.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ, Jenks BG, Willems PH, Roubos EW., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Transcripts and CpG islands associated with the pro-opiomelanocortin gene and other neurally expressed genes., Gardiner-Garden M, Frommer M., J Mol Endocrinol. June 1, 1994; 12 (3): 365-82.


Immunohistochemical analysis of the relation between 5-hydroxytryptamine- and neuropeptide-immunoreactive elements in the spinal cord of an amphibian (Xenopus laevis)., Pieribone VA, Brodin L, Hökfelt T., J Comp Neurol. March 22, 1994; 341 (4): 492-506.


Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis., Roubos EW, Berghs CA., Cell Tissue Res. December 1, 1993; 274 (3): 587-96.


Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction., Vamvakopoulos NC, Chrousos GP., J Clin Invest. October 1, 1993; 92 (4): 1896-902.


Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues., Taira M, Hayes WP, Otani H, Dawid IB., Dev Biol. September 1, 1993; 159 (1): 245-56.              


Analysis of inositol phosphate metabolism in melanotrope cells of Xenopus laevis in relation to background adaptation., Jenks BG, de Koning HP, Cruijsen PM, Mauger CM, Roubos EW, Tonon MC, Desrues L, Vaudry H., Ann N Y Acad Sci. May 31, 1993; 680 188-98.


Proopiomelanocortin gene expression as a neural marker during the embryonic development of Xenopus laevis., Heideveld M, Ayoubi TA, van de Wiel MH, Martens GJ, Durston AJ., Differentiation. March 1, 1993; 52 (3): 195-200.        


Alpha,N-acetyl beta-endorphin [1-8] is the terminal product of processing of endorphins in the melanotrope cells of Xenopus laevis, as demonstrated by FAB tandem mass spectrometry., van Strien FJ, Jenks BG, Heerma W, Versluis C, Kawauchi H, Roubos EW., Biochem Biophys Res Commun. February 26, 1993; 191 (1): 262-8.


Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis., Leenders HJ, de Koning HP, Ponten SP, Jenks BG, Roubos EW., Life Sci. January 1, 1993; 52 (24): 1969-75.


Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: two members of the CRF family exist in amphibians., Stenzel-Poore MP, Heldwein KA, Stenzel P, Lee S, Vale WW., Mol Endocrinol. October 1, 1992; 6 (10): 1716-24.


Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis., de Koning HP, Jenks BG, Scheenen WJ, Balm PH, Roubos EW., Gen Comp Endocrinol. September 1, 1992; 87 (3): 394-401.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA, Guldemond KC, van Riel MC, Coenen AJ, Martens GJ., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis., Ayoubi TA, Jenks BG, Roubos EW, Martens GJ., Endocrinology. June 1, 1992; 130 (6): 3560-6.


Evolutionary conservation of the 14-3-3 protein., Martens GJ, Piosik PA, Danen EH., Biochem Biophys Res Commun. May 15, 1992; 184 (3): 1456-9.


Comparative structural analysis of the transcriptionally active proopiomelanocortin genes A and B of Xenopus laevis., Deen PM, Bussemakers MJ, Terwel D, Roubos EW, Martens GJ., Mol Biol Evol. May 1, 1992; 9 (3): 483-94.


Molecular cloning and expression of a rat V1a arginine vasopressin receptor., Morel A, O'Carroll AM, Brownstein MJ, Lolait SJ., Nature. April 9, 1992; 356 (6369): 523-6.


Purification and characterization of joining peptide and N-terminal peptide of proopiomelanocortin from the pars distalis of the bullfrog pituitary., Iwamuro S, Hayashi H, Delbende C, Vaudry H, Kikuyama S., Peptides. January 1, 1992; 13 (4): 729-35.


Dynamics of cyclic-AMP efflux in relation to alpha-MSH secretion from melanotrope cells of Xenopus laevis., de Koning HP, Jenks BG, Huchedé B, Roubos EW., Life Sci. January 1, 1992; 51 (21): 1667-73.


Presence of Vi-transposon-like elements in the proopiomelanocortin gene A of Xenopus laevis does not affect gene activity., Deen PM, Roubos EW, Martens GJ., Mol Gen Genet. December 1, 1991; 230 (3): 491-3.


Structural analysis of the entire proopiomelanocortin gene of Xenopus laevis., Deen PM, Terwel D, Bussemakers MJ, Roubos EW, Martens GJ., Eur J Biochem. October 1, 1991; 201 (1): 129-37.


Adrenocorticotropin receptors: functional expression from rat adrenal mRNA in Xenopus laevis oocytes., Mertz LM, Catt KJ., Proc Natl Acad Sci U S A. October 1, 1991; 88 (19): 8525-9.


Isolation and functional expression of a mammalian prohormone processing enzyme, murine prohormone convertase 1., Korner J, Chun J, Harter D, Axel R., Proc Natl Acad Sci U S A. August 1, 1991; 88 (15): 6834-8.


Characterization of chicken ACTH and alpha-MSH: the primary sequence of chicken ACTH is more similar to Xenopus ACTH than to other avian ACTH., Hayashi H, Imai K, Imai K., Gen Comp Endocrinol. June 1, 1991; 82 (3): 434-43.


Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study., Ayoubi TA, van Duijnhoven HL, Coenen AJ, Jenks BG, Roubos EW, Martens GJ., Cell Tissue Res. May 1, 1991; 264 (2): 329-34.


Study of frog (Rana esculenta) proopiomelanocortin processing in the intermediate pituitary. Identification of alpha-melanotropin, beta-melanotropin, Lys-gamma-melanotropin, and corticotropin-like intermediate lobe peptide., Chauvet J, Michel G, Rouillé Y, Chauvet MT, Acher R., Int J Pept Protein Res. March 1, 1991; 37 (3): 236-40.


Nucleotide sequence of cDNA coding for mink proopiomelanocortin (POMC) and its comparative analysis with POMC mRNA primary structures from pituitaries of other animal species and man., Mertvetsov NP, Karginov VA, Golovin SJa, Bondar AA, Morozov IV, Zelenin SM, Blinov VM., Biomed Biochim Acta. January 1, 1991; 50 (9): 1057-64.


Characterization of the cDNA encoding proopiomelanocortin in the frog Rana ridibunda., Hilario E, Lihrmann I, Vaudry H., Biochem Biophys Res Commun. December 14, 1990; 173 (2): 653-9.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP, Loh YP., Development. November 1, 1990; 110 (3): 747-57.              

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???