Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (299) GO Terms (5) Nucleotides (152) Proteins (40) Interactants (152) Wiki
XB-GENEPAGE-979622

Papers associated with gtf3a



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Contacts between 5 S DNA and Xenopus TFIIIA identified using 5-azido-2'-deoxyuridine-substituted DNA., Lee DK, Evans RK, Blanco J, Gottesfeld J, Johnson JD., J Biol Chem. September 5, 1991; 266 (25): 16478-84.


Is there a Xenopus transcription factor that can substitute for TFIIIA? Re: Two TFIIIA activities regulate expression of the Xenopus 5S RNA gene families., Brown DD., Genes Dev. October 1, 1991; 5 (10): 1737-8.


The genes encoding the major 42S storage particle proteins are expressed in male and female germ cells of Xenopus laevis., Abdallah B, Hourdry J, Deschamps S, Denis H, Mazabraud A., Development. November 1, 1991; 113 (3): 851-6.        


The use of chemical nucleases to analyze RNA-protein interactions. The TFIIIA-5 S rRNA complex., Darsillo P, Huber PW., J Biol Chem. November 5, 1991; 266 (31): 21075-82.


Zinc transfer from transcription factor IIIA fingers to thionein clusters., Zeng J, Vallee BL, Kägi JH., Proc Natl Acad Sci U S A. November 15, 1991; 88 (22): 9984-8.


High yield purification of active transcription factor IIIA expressed in E. coli., Del Río S, Setzer DR., Nucleic Acids Res. November 25, 1991; 19 (22): 6197-203.


Structural elements in the N-terminal half of transcription factor IIIA required for factor binding to the 5S RNA gene internal control region., Smith JF, Hawkins J, Leonard RE, Hanas JS., Nucleic Acids Res. December 25, 1991; 19 (24): 6871-6.


Isolation and characterization of the gene encoding EF-1 alpha O, an elongation factor 1-alpha expressed during early development of Xenopus laevis., Frydenberg J, Poulsen K, Petersen AK, Lund A, Olesen OF., Gene. December 30, 1991; 109 (2): 185-92.


Single crystals of long DNA molecules., Fairall L, Finch JT., J Biomol Struct Dyn. February 1, 1992; 9 (4): 633-42.


Histones H2A/H2B inhibit the interaction of transcription factor IIIA with the Xenopus borealis somatic 5S RNA gene in a nucleosome., Hayes JJ, Wolffe AP., Proc Natl Acad Sci U S A. February 15, 1992; 89 (4): 1229-33.


The deduced sequence of the transcription factor TFIIIA from Saccharomyces cerevisiae reveals extensive divergence from Xenopus TFIIIA., Archambault J, Milne CA, Schappert KT, Baum B, Friesen JD, Segall J., J Biol Chem. February 15, 1992; 267 (5): 3282-8.


Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene., Liao XB, Clemens KR, Tennant L, Wright PE, Gottesfeld JM., J Mol Biol. February 20, 1992; 223 (4): 857-71.


The identification and characterization of KRAB-domain-containing zinc finger proteins., Constantinou-Deltas CD, Gilbert J, Bartlett RJ, Herbstreith M, Roses AD, Lee JE., Genomics. March 1, 1992; 12 (3): 581-9.


Characterization of a Xenopus oocyte factor that binds to a developmentally regulated cis-element in the TFIIIA gene., Pfaff SL, Taylor WL., Dev Biol. May 1, 1992; 151 (1): 306-16.


Genes encoding transcription factor IIIA and the RNA polymerase common subunit RPB6 are divergently transcribed in Saccharomyces cerevisiae., Woychik NA, Young RA., Proc Natl Acad Sci U S A. May 1, 1992; 89 (9): 3999-4003.


Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library., Stephen CW, Lane DP., J Mol Biol. June 5, 1992; 225 (3): 577-83.


Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site., Bogenhagen DF, Sands MS., Nucleic Acids Res. June 11, 1992; 20 (11): 2639-45.


Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene., Darby MK, Joho KE., Mol Cell Biol. July 1, 1992; 12 (7): 3155-64.


Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene., Cabrera HL, Barrio R, Arribas C., Biochem J. August 15, 1992; 286 ( Pt 1) 281-8.


Interaction of Xenopus TFIIIC with the TFIIIA.5 S RNA gene complex., Keller HJ, Romaniuk PJ, Gottesfeld JM., J Biol Chem. September 5, 1992; 267 (25): 18190-8.


Structure of the TFIIIA-5 S DNA complex., Hayes JJ, Tullius TD., J Mol Biol. September 20, 1992; 227 (2): 407-17.


A new approach to the analysis of DNase I footprinting data and its application to the TFIIIA/5S DNA complex., Fairall L, Rhodes D., Nucleic Acids Res. September 25, 1992; 20 (18): 4727-31.


Comparison of the sequence and structure of transcription factor IIIA from Bufo americanus and Rana pipiens., Gaskins CJ, Smith JF, Ogilvie MK, Hanas JS., Gene. October 21, 1992; 120 (2): 197-206.


The interactions of zinc, nickel, and cadmium with Xenopus transcription factor IIIA, assessed by equilibrium dialysis., Makowski GS, Sunderman FW., J Inorg Biochem. November 1, 1992; 48 (2): 107-19.


RNA and DNA binding zinc fingers in Xenopus TFIIIA., Theunissen O, Rudt F, Guddat U, Mentzel H, Pieler T., Cell. November 13, 1992; 71 (4): 679-90.


Locations of contacts between individual zinc fingers of Xenopus laevis transcription factor IIIA and the internal control region of a 5S RNA gene., Hayes JJ, Clemens KR., Biochemistry. November 24, 1992; 31 (46): 11600-5.


Identification of nuclear factors which interact with the 5' flanking region of the EF-1 alpha O gene in Xenopus laevis., Olesen OF, Frydenberg J., FEBS Lett. November 30, 1992; 313 (3): 205-9.


Zinc induces a bend within the transcription factor IIIA-binding region of the 5 S RNA gene., Nickol J, Rau DC., J Mol Biol. December 20, 1992; 228 (4): 1115-23.


The role of zinc fingers in transcriptional activation by transcription factor IIIA., Del Rio S, Setzer DR., Proc Natl Acad Sci U S A. January 1, 1993; 90 (1): 168-72.


TFIIIA and DNA supercoiling: toward resolving a controversy., Kmiec EB., Cytobios. January 1, 1993; 76 (305): 81-9.


A positive role for histone acetylation in transcription factor access to nucleosomal DNA., Lee DY, Hayes JJ, Pruss D, Wolffe AP., Cell. January 15, 1993; 72 (1): 73-84.


The conformation of loop E of eukaryotic 5S ribosomal RNA., Wimberly B, Varani G, Tinoco I., Biochemistry. February 2, 1993; 32 (4): 1078-87.


Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein., Clemens KR, Wolf V, McBryant SJ, Zhang P, Liao X, Wright PE, Gottesfeld JM., Science. April 23, 1993; 260 (5107): 530-3.


TFIIIA: nine fingers--three hands?, Pieler T, Theunissen O., Trends Biochem Sci. June 1, 1993; 18 (6): 226-30.


Histone-DNA contacts in a nucleosome core containing a Xenopus 5S rRNA gene., Pruss D, Wolffe AP., Biochemistry. July 13, 1993; 32 (27): 6810-4.


Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos., Rollins MB, Del Rio S, Galey AL, Setzer DR, Andrews MT., Mol Cell Biol. August 1, 1993; 13 (8): 4776-83.


Masking mRNA from translation in somatic cells., Ranjan M, Tafuri SR, Wolffe AP., Genes Dev. September 1, 1993; 7 (9): 1725-36.


Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA., Bogenhagen DF., Mol Cell Biol. September 1, 1993; 13 (9): 5149-58.


Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains., Hansen PK, Christensen JH, Nyborg J, Lillelund O, Thøgersen HC., J Mol Biol. September 20, 1993; 233 (2): 191-202.


Transcription factor IIIA (TFIIIA): an update., Shastry BS., Experientia. October 15, 1993; 49 (10): 831-5.


The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA., Del Rio S, Menezes SR, Setzer DR., J Mol Biol. October 20, 1993; 233 (4): 567-79.


Selective recruitment of masked maternal mRNA from messenger ribonucleoprotein particles containing FRGY2 (mRNP4)., Tafuri SR, Wolffe AP., J Biol Chem. November 15, 1993; 268 (32): 24255-61.


A position-dependent transcription-activating domain in TFIIIA., Mao X, Darby MK., Mol Cell Biol. December 1, 1993; 13 (12): 7496-506.


Interaction of higher plant ribosomal 5S RNAs with Xenopus laevis transcriptional factor IIIA., Barciszewska MZ., Acta Biochim Pol. January 1, 1994; 41 (1): 17-24.


Bead-shift isolation of protein--DNA complexes on a 5S RNA gene., Peck LJ, Bartilson M, DeRisi JL., Nucleic Acids Res. February 11, 1994; 22 (3): 443-9.


DNA strand exchange in the absence of homologous pairing., Kmiec EB, Holloman WK., J Biol Chem. April 1, 1994; 269 (13): 10163-8.


1H, 15N and 13C resonance assignments for the first three zinc fingers of transcription factor IIIA., Liao X, Clemens K, Cavanagh J, Tennant L, Wright PE., J Biomol NMR. May 1, 1994; 4 (3): 433-54.


Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1., Bouvet P, Dimitrov S, Wolffe AP., Genes Dev. May 15, 1994; 8 (10): 1147-59.


Contribution of individual base pairs to the interaction of TFIIIA with the Xenopus 5S RNA gene., Veldhoen N, You Q, Setzer DR, Romaniuk PJ., Biochemistry. June 21, 1994; 33 (24): 7568-75.


Purification and characterization of human transcription factor IIIA., Moorefield B, Roeder RG., J Biol Chem. August 19, 1994; 269 (33): 20857-65.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???