Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (110) GO Terms (5) Nucleotides (433) Proteins (53) Interactants (228) Wiki
XB-GENEPAGE-481037

Papers associated with gjb1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Structure of the amino terminus of a gap junction protein., Purnick PE, Benjamin DC, Verselis VK, Bargiello TA, Dowd TL., Arch Biochem Biophys. September 15, 2000; 381 (2): 181-90.


Slow gating of gap junction channels and calmodulin., Peracchia C, Wang XG, Peracchia LL., J Membr Biol. November 1, 2000; 178 (1): 55-70.


Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32., Purnick PE, Oh S, Abrams CK, Verselis VK, Bargiello TA., Biophys J. November 1, 2000; 79 (5): 2403-15.


Cloning and analysis of the untranslated regions of the Xenopus laevis Connexin30 mRNA., Meijer HA, Dictus WJ, Thomas AA., Gene. November 27, 2000; 258 (1-2): 71-6.


The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels., Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK., Biophys J. December 1, 2000; 79 (6): 3036-51.


Calmodulin colocalizes with connexins and plays a direct role in gap junction channel gating., Sotkis A, Wang XG, Yasumura T, Peracchia LL, Persechini A, Rash JE, Peracchia C., Cell Commun Adhes. January 1, 2001; 8 (4-6): 277-81.


Size selectivity between gap junction channels composed of different connexins., Gong XQ, Nicholson BJ., Cell Commun Adhes. January 1, 2001; 8 (4-6): 187-92.


Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot-Marie-Tooth disease., Abrams CK, Freidin MM, Verselis VK, Bennett MV, Bargiello TA., Dev Biol. May 4, 2001; 900 (1): 9-25.


Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-linked Charcot-Marie-Tooth disease., Dubourg O, Tardieu S, Birouk N, Gouider R, Léger JM, Maisonobe T, Brice A, Bouche P, LeGuern E., Brain. October 1, 2001; 124 (Pt 10): 1958-67.


Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease., Abrams CK, Bennett MV, Verselis VK, Bargiello TA., Proc Natl Acad Sci U S A. March 19, 2002; 99 (6): 3980-4.


Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems., Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL., J Neurosci. August 1, 2002; 22 (15): 6458-70.


Virtual cloning, functional expression, and gating analysis of human connexin31.9., White TW, Srinivas M, Ripps H, Trovato-Salinaro A, Condorelli DF, Bruzzone R., Am J Physiol Cell Physiol. September 1, 2002; 283 (3): C960-70.


Identification of amino acid residues lining the pore of a gap junction channel., Skerrett IM, Aronowitz J, Shin JH, Cymes G, Kasperek E, Cao FL, Nicholson BJ., J Cell Biol. October 28, 2002; 159 (2): 349-60.                    


K(ATP) channel activity is required for hatching in Xenopus embryos., Cheng SM, Chen I, Levin M., Dev Dyn. December 1, 2002; 225 (4): 588-91.        


The voltage gates of connexin channels are sensitive to CO(2)., Peracchia C, Young KC, Wang XG, Chen JT, Peracchia LL., Cell Commun Adhes. January 1, 2003; 10 (4-6): 233-7.


Multiple connexins contribute to intercellular communication in the Xenopus embryo., Landesman Y, Postma FR, Goodenough DA, Paul DL., J Cell Sci. January 1, 2003; 116 (Pt 1): 29-38.    


Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels., Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK., J Gen Physiol. October 1, 2003; 122 (4): 389-405.                    


Pathogenesis of X-linked Charcot-Marie-Tooth disease: differential effects of two mutations in connexin 32., Abrams CK, Freidin M, Bukauskas F, Dobrenis K, Bargiello TA, Verselis VK, Bennett MV, Chen L, Sahenk Z., J Neurosci. November 19, 2003; 23 (33): 10548-58.


Molecular basis of calcium regulation in connexin-32 hemichannels., Gómez-Hernández JM, de Miguel M, Larrosa B, González D, Barrio LC., Proc Natl Acad Sci U S A. December 23, 2003; 100 (26): 16030-5.


CO(2) sensitivity of voltage gating and gating polarity of gapjunction channels--connexin40 and its COOH-terminus-truncated mutant., Peracchia C, Chen JT, Peracchia LL., J Membr Biol. July 15, 2004; 200 (2): 105-13.


The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities., Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ., Biophys J. August 1, 2004; 87 (2): 958-73.


Determinants of gating polarity of a connexin 32 hemichannel., Oh S, Rivkin S, Tang Q, Verselis VK, Bargiello TA., Biophys J. August 1, 2004; 87 (2): 912-28.


Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity., Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G., Hum Mol Genet. August 15, 2004; 13 (16): 1703-14.


Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration., Fiorini C, Mograbi B, Cronier L, Bourget I, Decrouy X, Nebout M, Ferrua B, Malassine A, Samson M, Fénichel P, Segretain D, Pointis G., J Cell Sci. September 15, 2004; 117 (Pt 20): 4665-72.


Opposite Cx32 and Cx26 voltage-gating response to CO2 reflects opposite voltage-gating polarity., Young KC, Peracchia C., J Membr Biol. December 1, 2004; 202 (3): 161-70.


XEpac, a guanine nucleotide-exchange factor for Rap GTPase, is a novel hatching gland specific marker during the Xenopus embryogenesis., Lee SJ, Han JK., Dev Dyn. April 1, 2005; 232 (4): 1091-7.      


Severe neuropathy with leaky connexin32 hemichannels., Liang GS, de Miguel M, Gómez-Hernández JM, Glass JD, Scherer SS, Mintz M, Barrio LC, Fischbeck KH., Ann Neurol. May 1, 2005; 57 (5): 749-54.


Xenopus connexins: how frogs bridge the gap., de Boer TP, van der Heyden MA., Differentiation. September 1, 2005; 73 (7): 330-40.


Conductance of connexin hemichannels segregates with the first transmembrane segment., Hu X, Ma M, Dahl G., Biophys J. January 1, 2006; 90 (1): 140-50.


Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes., Kotsias BA, Salim M, Peracchia LL, Peracchia C., J Membr Biol. January 1, 2006; 214 (1): 1-8.


Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment., Palmada M, Schmalisch K, Böhmer C, Schug N, Pfister M, Lang F, Blin N., Neurobiol Dis. April 1, 2006; 22 (1): 112-8.


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D, Kirilenko P, Rankin S, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM., Development. May 1, 2006; 133 (10): 1955-66.              


Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis., de Boer TP, Kok B, Roël G, van Veen TA, Destrée OH, Rook MB, Vos MA, de Bakker JM, van der Heyden MA., Biochem Biophys Res Commun. October 20, 2006; 349 (2): 855-62.                  


Unusual slow gating of gap junction channels in oocytes expressing connexin32 or its COOH-terminus truncated mutant., Peracchia C, Salim M, Peracchia LL., J Membr Biol. February 1, 2007; 215 (2-3): 161-8.


Site-directed mutagenesis reveals putative regions of protein interaction within the transmembrane domains of connexins., Toloue MM, Woolwine Y, Karcz JA, Kasperek EM, Nicholson BJ, Skerrett IM., Cell Commun Adhes. May 1, 2008; 15 (1): 95-105.


Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel., Oh S, Verselis VK, Bargiello TA., J Physiol. May 15, 2008; 586 (10): 2445-61.


Conformational changes in a pore-forming region underlie voltage-dependent "loop gating" of an unapposed connexin hemichannel., Tang Q, Dowd TL, Verselis VK, Bargiello TA., J Gen Physiol. June 1, 2009; 133 (6): 555-70.                    


Zebrafish cx30.3: identification and characterization of a gap junction gene highly expressed in the skin., Tao L, DeRosa AM, White TW, Valdimarsson G., Dev Dyn. October 1, 2010; 239 (10): 2627-36.


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C, Senkel S, Ryffel GU., BMC Dev Biol. January 31, 2011; 11 5.              


Connexin26-mediated transfer of laterality cues in Xenopus., Beyer T, Thumberger T, Schweickert A, Blum M., Biol Open. May 15, 2012; 1 (5): 473-81.            


Voltage-dependent conformational changes in connexin channels., Bargiello TA, Tang Q, Oh S, Kwon T., Biochim Biophys Acta. August 1, 2012; 1818 (8): 1807-22.


Prolonged FGF signaling is necessary for lung and liver induction in Xenopus., Shifley ET, Kenny AP, Rankin SA, Rankin SA, Zorn AM., BMC Dev Biol. September 18, 2012; 12 27.                      


Voltage-dependent gating of the Cx32*43E1 hemichannel: conformational changes at the channel entrances., Kwon T, Tang Q, Bargiello TA., J Gen Physiol. February 1, 2013; 141 (2): 243-59.                  


The carboxyl terminal residues 220-283 are not required for voltage gating of a chimeric connexin32 hemichannel., Kwon T, Dowd TL, Bargiello TA., Biophys J. September 17, 2013; 105 (6): 1376-82.


Role of connexin 32 hemichannels in the release of ATP from peripheral nerves., Nualart-Marti A, del Molino EM, Grandes X, Bahima L, Martin-Satué M, Puchal R, Fasciani I, González-Nieto D, Ziganshin B, Llobet A, Barrio LC, Solsona C., Glia. December 1, 2013; 61 (12): 1976-89.


Distinct permeation profiles of the connexin 30 and 43 hemichannels., Hansen DB, Braunstein TH, Nielsen MS, MacAulay N., FEBS Lett. April 17, 2014; 588 (8): 1446-57.


Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels., Hansen DB, Ye ZC, Calloe K, Braunstein TH, Hofgaard JP, Ransom BR, Nielsen MS, MacAulay N., J Biol Chem. September 19, 2014; 289 (38): 26058-26073.


Cell communication across gap junctions: a historical perspective and current developments., Evans WH., Biochem Soc Trans. June 1, 2015; 43 (3): 450-9.


Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32., Brennan MJ, Karcz J, Vaughn NR, Woolwine-Cunningham Y, DePriest AD, Escalona Y, Perez-Acle T, Skerrett IM., J Biol Chem. July 10, 2015; 290 (28): 17074-84.


Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules., Tong X, Lopez W, Ramachandran J, Ayad WA, Liu Y, Lopez-Rodriguez A, Harris AL, Contreras JE., J Gen Physiol. September 1, 2015; 146 (3): 245-54.            

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???