Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (117) GO Terms (7) Nucleotides (155) Proteins (48) Interactants (1184) Wiki
XB-GENEPAGE-479768

Papers associated with eomes



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Emilin1 links TGF-beta maturation to blood pressure homeostasis., Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM., Cell. March 10, 2006; 124 (5): 929-42.    


Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation., Bachmann MF, Beerli RR, Agnellini P, Wolint P, Schwarz K, Oxenius A., Eur J Immunol. April 1, 2006; 36 (4): 842-54.


The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells., Atherly LO, Lucas JA, Felices M, Yin CC, Reiner SL, Berg LJ., Immunity. July 1, 2006; 25 (1): 79-91.


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA, Collart C, Gilchrist MJ, Smith JC., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


PP2A:B56epsilon is required for eye induction and eye field separation., Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J., Dev Biol. February 15, 2007; 302 (2): 477-93.                  


Interpretation of BMP signaling in early Xenopus development., Simeoni I, Gurdon JB., Dev Biol. August 1, 2007; 308 (1): 82-92.                  


Cloning and developmental expression of the soxB2 genes, sox14 and sox21, during Xenopus laevis embryogenesis., Cunningham DD, Meng Z, Fritzsch B, Casey ES., Int J Dev Biol. January 1, 2008; 52 (7): 999-1004.    


Anuran olfactory bulb organization: embryology, neurochemistry and hodology., Moreno N, Morona R, López JM, Dominguez L, Muñoz M, González A., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.


The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus., Fletcher RB, Harland RM., Dev Dyn. May 1, 2008; 237 (5): 1243-54.            


Eomesodermin requires transforming growth factor-beta/activin signaling and binds Smad2 to activate mesodermal genes., Picozzi P, Wang F, Cronk K, Ryan K., J Biol Chem. January 23, 2009; 284 (4): 2397-408.


Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review., Wullimann MF., Integr Zool. March 1, 2009; 4 (1): 123-133.


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ, Hassan SM, Martin JD, Li S, Merzdorf CS., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation., Cuykendall TN, Houston DW., Development. September 1, 2009; 136 (18): 3057-65.      


Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling., Samuel LJ, Latinkić BV., PLoS One. October 28, 2009; 4 (10): e7650.                


Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin., Fukuda M, Takahashi S, Haramoto Y, Onuma Y, Kim YJ, Yeo CY, Ishiura S, Asashima M., Int J Dev Biol. January 1, 2010; 54 (1): 81-92.              


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA., PLoS One. January 1, 2011; 6 (6): e20309.                  


Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation., Rousso SZ, Schyr RB, Gur M, Zouela N, Kot-Leibovich H, Shabtai Y, Koutsi-Urshanski N, Baldessari D, Pillemer G, Niehrs C, Fainsod A., Dev Dyn. April 1, 2011; 240 (4): 796-807.        


Snail2 controls mesodermal BMP/Wnt induction of neural crest., Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW., Development. August 1, 2011; 138 (15): 3135-45.                  


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS, Harland RM., Genes Dev. June 15, 2012; 26 (12): 1351-63.                        


A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus., Szenker E, Lacoste N, Almouzni G., Cell Rep. June 28, 2012; 1 (6): 730-40.                                      


The Mix family of homeobox genes--key regulators of mesendoderm formation during vertebrate development., Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG., Dev Biol. July 15, 2012; 367 (2): 163-77.        


Conservation and evolutionary divergence in the activity of receptor-regulated smads., Sorrentino GM, Gillis WQ, Oomen-Hajagos J, Thomsen GH., Evodevo. October 1, 2012; 3 (1): 22.              


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY, Reversade B, Knowles BB, Solter D., Development. February 1, 2013; 140 (4): 853-60.                                              


Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream., Huilgol D, Udin S, Shimogori T, Saha B, Roy A, Aizawa S, Hevner RF, Meyer G, Ohshima T, Pleasure SJ, Zhao Y, Tole S., Nat Neurosci. February 1, 2013; 16 (2): 157-65.    


TBX3 Directs Cell-Fate Decision toward Mesendoderm., Weidgang CE, Russell R, Tata PR, Kühl SJ, Illing A, Müller M, Lin Q, Brunner C, Boeckers TM, Bauer K, Kartikasari AE, Guo Y, Radenz M, Bernemann C, Weiß M, Seufferlein T, Zenke M, Iacovino M, Kyba M, Schöler HR, Kühl M, Liebau S, Kleger A., Stem Cell Reports. August 29, 2013; 1 (3): 248-65.                


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE, Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ, Smith JC., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development., Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ., BMC Genomics. November 6, 2013; 14 762.              


High-resolution analysis of gene activity during the Xenopus mid-blastula transition., Collart C, Owens ND, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ., Development. May 1, 2014; 141 (9): 1927-39.                  


Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression., Nelson AC, Cutty SJ, Niini M, Stemple DL, Flicek P, Houart C, Bruce AE, Wardle FC., BMC Biol. October 3, 2014; 12 81.            


Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus., Gupta R, Wills A, Ucar D, Baker J., Dev Biol. November 1, 2014; 395 (1): 38-49.            


E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation., Wills AE, Baker JC., Dev Cell. February 9, 2015; 32 (3): 345-57.                  


The evolution of basal progenitors in the developing non-mammalian brain., Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K., Development. January 1, 2016; 143 (1): 66-74.          


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L, Zhu X, Chen G, Ma X, Zhang Y, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q, Tao Q., Development. February 1, 2016; 143 (3): 492-503.                            


Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors., Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJ., Development. April 15, 2016; 143 (8): 1340-50.                    


Eomesodermin-At Dawn of Cell Fate Decisions During Early Embryogenesis., Probst S, Arnold SJ., Curr Top Dev Biol. January 1, 2017; 122 93-115.


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N, González A., Front Neuroanat. March 27, 2017; 11 24.                        


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM, Paraiso KD, Blitz IL, Cho KWY., Semin Cell Dev Biol. June 1, 2017; 66 12-24.    


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ., Dev Biol. June 15, 2017; 426 (2): 409-417.        


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Regulatory remodeling in the allo-tetraploid frog Xenopus laevis., Elurbe DM, Paranjpe SS, Georgiou G, van Kruijsbergen I, Bogdanovic O, Gibeaux R, Heald R, Lister R, Huynen MA, van Heeringen SJ, Veenstra GJC., Genome Biol. October 24, 2017; 18 (1): 198.              


EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction., Mielenz D, Reichel M, Jia T, Quinlan EB, Stöckl T, Mettang M, Zilske D, Kirmizi-Alsan E, Schönberger P, Praetner M, Huber SE, Amato D, Schwarz M, Purohit P, Brachs S, Spranger J, Hess A, Büttner C, Ekici AB, Perez-Branguli F, Winner B, Rauschenberger V, Banaschewski T, Bokde ALW, Büchel C, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Garavan H, Gowland P, Heinz A, Martinot JL, Lemaitre H, Nees F, Paus T, Smolka MN, IMAGEN Consortium, Schambony A, Bäuerle T, Eulenburg V, Alzheimer C, Lourdusamy A, Schumann G, Müller CP., Mol Psychiatry. May 1, 2018; 23 (5): 1303-1319.            


Tbx2 is required for the suppression of mesendoderm during early Xenopus development., Teegala S, Chauhan R, Lei E, Weinstein DC., Dev Dyn. July 1, 2018; 247 (7): 903-913.                


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A, Smialowski P, Rupp RA., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.                          


Transcriptome analysis of regeneration during Xenopus laevis experimental twinning., Sosa EA, Moriyama Y, Ding Y, Tejeda-Muñoz N, Colozza G, De Robertis EM., Int J Dev Biol. January 1, 2019; 63 (6-7): 301-309.


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A, Hirakawa M, Sakuma T, Yamamoto T, Hashimoto C., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Mechanistic insights from the LHX1-driven molecular network in building the embryonic head., McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL., Dev Growth Differ. June 1, 2019; 61 (5): 327-336.


The Spatiotemporal Control of Zygotic Genome Activation., Gentsch GE, Owens NDL, Smith JC., iScience. June 28, 2019; 16 485-498.                          


Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals., Gentsch GE, Spruce T, Owens NDL, Smith JC., Nat Commun. September 19, 2019; 10 (1): 4269.                                        

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???