Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (29) GO Terms (3) Nucleotides (38) Proteins (23) Interactants (177) Wiki
XB-GENEPAGE-6458637

Papers associated with amh



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Evolutionary conservation of H-Y (''male'') antigen., Wachtel SS, Koo GC, Boyse EA., Nature. March 20, 1975; 254 (5497): 270-2.


[Invariability of the H-Y antigen expression in the heterogametic sex of some amphbians and evidence for sexual dimophrism of the antigen expression in Pelodytes punctatus D (Amphibia, Anura)]., Zaborski P., C R Acad Sci Hebd Seances Acad Sci D. December 10, 1979; 289 (15): 1153-6.


Does H-Y antigen induce the heterogametic ovary?, Wachtel SS, Bresler PA, Koide SS., Cell. July 1, 1980; 20 (3): 859-64.


The Z-chromosome is involved in the regulation of H-W (H-Y) antigen gene expression in Xenopus., Engel W, Kobel HR., Cytogenet Cell Genet. January 1, 1983; 35 (1): 28-33.


H-Y antigen expression in heterogametic males (XY) and females (ZW): a factor in reproductive strategy?, Yang TJ., Experientia. February 15, 1986; 42 (2): 190-1.


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J, Smith JC, Smith EJ, Yaqoob M., Development. December 1, 1987; 101 (4): 893-908.            


Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor., Smith JC, Yaqoob M, Symes K., Development. July 1, 1988; 103 (3): 591-600.


Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor., Fukuzawa T, Bagnara JT., Pigment Cell Res. January 1, 1989; 2 (3): 171-81.


Mesoderm induction and the control of gastrulation in Xenopus laevis: the roles of fibronectin and integrins., Smith JC, Symes K, Hynes RO, DeSimone D., Development. February 1, 1990; 108 (2): 229-38.


Activin-like factor from a Xenopus laevis cell line responsible for mesoderm induction., van den Eijnden-Van Raaij AJ, van Zoelent EJ, van Nimmen K, Koster CH, Snoek GT, Durston AJ, Huylebroeck D., Nature. June 21, 1990; 345 (6277): 732-4.


Identification in Xenopus of a structural homologue of the Drosophila gene snail., Sargent MG, Bennett MF., Development. August 1, 1990; 109 (4): 967-73.


Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate., Green JB, Smith JC., Nature. September 27, 1990; 347 (6291): 391-4.


Growth-factor-related proteins that are inducers in early amphibian development may mediate similar steps in amniote (bird) embryogenesis., Cooke J, Wong A., Development. January 1, 1991; 111 (1): 197-212.


Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of alpha-smooth muscle actin., Saint-Jeannet JP, Levi G, Girault JM, Koteliansky V, Thiery JP., Development. August 1, 1992; 115 (4): 1165-73.          


Cytokine components and mucosal immunity in the oviduct of Xenopus laevis (amphibia, pipidae)., Jantra S, Paulesu L, Lo Valvo M, Lillo F, Ietta F, Avanzati AM, Romagnoli R, Bechi N, Brizzi R., Gen Comp Endocrinol. September 15, 2011; 173 (3): 454-60.      


Sexual dimorphism of AMH, DMRT1 and RSPO1 localization in the developing gonads of six anuran species., Piprek RP, Pecio A, Laskowska-Kaszub K, Kubiak JZ, Szymura JM., Int J Dev Biol. January 1, 2013; 57 (11-12): 891-5.        


TRPV4 associates environmental temperature and sex determination in the American alligator., Yatsu R, Miyagawa S, Kohno S, Saito S, Lowers RH, Ogino Y, Fukuta N, Katsu Y, Ohta Y, Tominaga M, Guillette LJ, Iguchi T., Sci Rep. January 12, 2015; 5 18581.        


Molecular cloning and characterization of anti-Müllerian hormone (AMH) from the Japanese wrinkled frog, Rana rugosa., Kodama M, Suda M, Sakamoto D, Iwasaki T, Matsuo Y, Uno Y, Matsuda Y, Nakamura Y, Maekawa S, Katsu Y, Nakamura M., Endocrinology. May 1, 2015; 156 (5): 1914-23.


Nitrogenated honokiol derivatives allosterically modulate GABAA receptors and act as strong partial agonists., Bernaskova M, Schoeffmann A, Schuehly W, Hufner A, Baburin I, Hering S., Bioorg Med Chem. October 15, 2015; 23 (20): 6757-62.


Molecular and histological endpoints for developmental reproductive toxicity in Xenopus tropicalis: Levonorgestrel perturbs anti-Müllerian hormone and progesterone receptor expression., Säfholm M, Jansson E, Fick J, Berg C., Comp Biochem Physiol C Toxicol Pharmacol. January 1, 2016; 181-182 9-18.


Sex-dependent expression of anti-Müllerian hormone (amh) and amh receptor 2 during sex organ differentiation and characterization of the Müllerian duct development in Xenopus tropicalis., Jansson E, Mattsson A, Goldstone J, Berg C., Gen Comp Endocrinol. April 1, 2016; 229 132-44.


Masculinization-Related Genes and Cell-Mass Structures During Early Gonadal Differentiation in the African Clawed Frog Xenopus laevis., Wada M, Fujitani K, Tamura K, Mawaribuchi S, Kamata Y, Takamatsu N, Ito M., Zoolog Sci. April 1, 2017; 34 (2): 105-111.


Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads., Piprek RP, Damulewicz M, Kloc M, Kubiak JZ., Differentiation. January 1, 2018; 100 46-56.                          


Exposure to an anti-androgenic herbicide negatively impacts reproductive physiology and fertility in Xenopus tropicalis., Orton F, Säfholm M, Jansson E, Carlsson Y, Eriksson A, Fick J, Uren Webster T, McMillan T, Leishman M, Verbruggen B, Economou T, Tyler CR, Berg C., Sci Rep. June 14, 2018; 8 (1): 9124.          


Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis., Li Y, Shen Y, Li J, Cai M, Qin Z., Aquat Toxicol. September 1, 2020; 226 105557.


Can Unlikely Neanderthal Chloride Channel CLC-2 Gene Variants Provide Insights in Modern Human Infertility?, Jeworutzki E, Tüttelmann F, Rothenberg I, Pusch M, Schreiber JA, Kliesch S, Wünsch B, Strutz-Seebohm N, Seebohm G., Cell Physiol Biochem. June 19, 2021; 55 (3): 301-310.


Bisphenol B disrupts testis differentiation partly via the estrogen receptor-mediated pathway and subsequently causes testicular dysgenesis in Xenopus laevis., Li HM, Li YY, Zhang YC, Li JB, Xu HM, Xiong YM, Qin ZF., Ecotoxicol Environ Saf. May 1, 2022; 236 113453.              


HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs., Liang T, Bai J, Zhou W, Lin H, Ma S, Zhu X, Tao Q, Xi Q., Cell Rep. July 12, 2022; 40 (2): 111038.                              


Impaired spermatogenesis and associated endocrine effects of azole fungicides in peripubertal Xenopus tropicalis., Svanholm S, Brouard V, Roza M, Marini D, Karlsson O, Berg C., Ecotoxicol Environ Saf. January 15, 2024; 270 115876.                  

???pagination.result.page??? 1