Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (29) GO Terms (3) Nucleotides (123) Proteins (56) Interactants (32) Wiki
XB-GENEPAGE-987678

Papers associated with kcnj16



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness., Schlingmann KP, Renigunta A, Hoorn EJ, Forst AL, Renigunta V, Atanasov V, Mahendran S, Barakat TS, Gillion V, Godefroid N, Brooks AS, Lugtenberg D, Lake J, Debaix H, Rudin C, Knebelmann B, Tellier S, Rousset-Rouvière C, Viering D, de Baaij JHF, Weber S, Palygin O, Staruschenko A, Kleta R, Houillier P, Bockenhauer D, Devuyst O, Vargas-Poussou R, Warth R, Zdebik AA, Konrad M., J Am Soc Nephrol. June 1, 2021; 32 (6): 1498-1512.


Identification of a unique endoplasmic retention motif in the Xenopus GIRK5 channel and its contribution to oocyte maturation., Rangel-Garcia CI, Salvador C, Chavez-Garcia K, Diaz-Bello B, Lopez-Gonzalez Z, Vazquez-Cruz L, Angel Vazquez-Martinez J, Ortiz-Navarrete V, Riveros-Rosas H, Escobar LI., FEBS Open Bio. April 1, 2021; 11 (4): 1093-1108.            


Lethal digenic mutations in the K+ channels Kir4.1 (KCNJ10) and SLACK (KCNT1) associated with severe-disabling seizures and neurodevelopmental delay., Hasan S, Balobaid A, Grottesi A, Dabbagh O, Cenciarini M, Rawashdeh R, Al-Sagheir A, Bove C, Macchioni L, Pessia M, Al-Owain M, D'Adamo MC., J Neurophysiol. October 1, 2017; 118 (4): 2402-2411.


Inwardly Rectifying K+ Currents in Cultured Oligodendrocytes from Rat Optic Nerve are Insensitive to pH., Pérez-Samartín A, Garay E, Moctezuma JPH, Cisneros-Mejorado A, Sánchez-Gómez MV, Martel-Gallegos G, Robles-Martínez L, Canedo-Antelo M, Matute C, Arellano RO., Neurochem Res. September 1, 2017; 42 (9): 2443-2455.


Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy., Sicca F, Ambrosini E, Marchese M, Sforna L, Servettini I, Valvo G, Brignone MS, Lanciotti A, Moro F, Grottesi A, Catacuzzeno L, Baldini S, Hasan S, D'Adamo MC, Franciolini F, Molinari P, Santorelli FM, Pessia M., Sci Rep. September 28, 2016; 6 34325.            


Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels., Thomson SJ, Hansen A, Sanguinetti MC., J Biol Chem. June 5, 2015; 290 (23): 14528-35.


KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16., Parrock S, Hussain S, Issler N, Differ AM, Lench N, Guarino S, Oosterveld MJ, Keijzer-Veen M, Brilstra E, van Wieringen H, Konijnenberg AY, Amin-Rasip S, Dumitriu S, Klootwijk E, Knoers N, Bockenhauer D, Kleta R, Zdebik AA., Nephron Physiol. January 1, 2013; 123 (3-4): 7-14.          


Potassium-dependent activation of Kir4.2 K⁺ channels., Edvinsson JM, Shah AJ, Palmer LG., J Physiol. December 15, 2011; 589 (Pt 24): 5949-63.


Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome., Williams DM, Lopes CM, Rosenhouse-Dantsker A, Connelly HL, Matavel A, O-Uchi J, McBeath E, Gray DA., J Am Soc Nephrol. December 1, 2010; 21 (12): 2117-29.


Kir5.1 underlies long-lived subconductance levels in heteromeric Kir4.1/Kir5.1 channels from Xenopus tropicalis., Shang L, Ranson SV, Tucker SJ., Biochem Biophys Res Commun. October 23, 2009; 388 (3): 501-5.          


Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations., Søe R, Andreasen M, Klaerke DA., Biochim Biophys Acta. September 1, 2009; 1788 (9): 1706-13.


MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents., Sindic A, Huang C, Chen AP, Ding Y, Miller-Little WA, Che D, Romero MF, Miller RT., Am J Physiol Renal Physiol. July 1, 2009; 297 (1): F36-45.


Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by small changes in cell volume., Soe R, Macaulay N, Klaerke DA., Neurosci Lett. June 26, 2009; 457 (2): 80-4.


Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels., Shang L, Tucker SJ., Eur Biophys J. February 1, 2008; 37 (2): 165-71.            


Modulation of the heteromeric Kir4.1-Kir5.1 channel by multiple neurotransmitters via Galphaq-coupled receptors., Rojas A, Su J, Yang L, Lee M, Cui N, Zhang X, Fountain D, Jiang C., J Cell Physiol. January 1, 2008; 214 (1): 84-95.


Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel., Rojas A, Cui N, Su J, Yang L, Muhumuza JP, Jiang C., Biochim Biophys Acta. September 1, 2007; 1768 (9): 2030-42.


Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function., Huang C, Sindic A, Hill CE, Hujer KM, Chan KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF, Miller RT., Am J Physiol Renal Physiol. March 1, 2007; 292 (3): F1073-81.


Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1., Fujiwara Y, Kubo Y., J Gen Physiol. April 1, 2006; 127 (4): 401-19.                    


Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats., Wu J, Xu H, Shen W, Jiang C., J Membr Biol. February 1, 2004; 197 (3): 179-91.


Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels., Casamassima M, D'Adamo MC, Pessia M, Tucker SJ., J Biol Chem. October 31, 2003; 278 (44): 43533-40.


Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels., Konstas AA, Korbmacher C, Tucker SJ., Am J Physiol Cell Physiol. April 1, 2003; 284 (4): C910-7.


Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel., Brochiero E, Wallendorf B, Gagnon D, Laprade R, Lapointe JY., Am J Physiol Renal Physiol. February 1, 2002; 282 (2): F289-300.


Modulation of the heteromeric Kir4.1-Kir5.1 channels by P(CO(2)) at physiological levels., Cui N, Giwa LR, Xu H, Rojas A, Abdulkadir L, Jiang C., J Cell Physiol. November 1, 2001; 189 (2): 229-36.


Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1., Pessia M, Imbrici P, D'Adamo MC, Salvatore L, Tucker SJ., J Physiol. April 15, 2001; 532 (Pt 2): 359-67.


Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits., Derst C, Karschin C, Wischmeyer E, Hirsch JR, Preisig-Müller R, Rajan S, Engel H, Grzeschik K, Daut J, Karschin A., FEBS Lett. March 2, 2001; 491 (3): 305-11.


Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH., Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C., J Gen Physiol. July 1, 2000; 116 (1): 33-45.                  


Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis., Xu H, Cui N, Yang Z, Qu Z, Jiang C., J Physiol. May 1, 2000; 524 Pt 3 725-35.


Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver., Pearson WL, Dourado M, Schreiber M, Salkoff L, Nichols CG., J Physiol. February 1, 1999; 514 ( Pt 3) (Pt 3): 639-53.


Inward rectifier potassium channels. Cloning, expression and structure-function studies., Lagrutta AA, Bond CT, Xia XM, Pessia M, Tucker S, Adelman JP., Jpn Heart J. September 1, 1996; 37 (5): 651-60.

???pagination.result.page??? 1