Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (44) GO Terms (7) Nucleotides (129) Proteins (37) Interactants (343) Wiki
XB-GENEPAGE-6049694

Papers associated with clcnkb



???displayGene.coCitedPapers???
6 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Expression and targeting to the plasma membrane of xClC-K, a chloride channel specifically expressed in distinct tubule segments of Xenopus laevis kidney., Maulet Y, Lambert RC, Mykita S, Mouton J, Partisani M, Bailly Y, Bombarde G, Feltz A., Biochem J. June 15, 1999; 340 ( Pt 3) 737-43.


Functional and structural analysis of ClC-K chloride channels involved in renal disease., Waldegger S, Jentsch TJ., J Biol Chem. August 11, 2000; 275 (32): 24527-33.


Barttin increases surface expression and changes current properties of ClC-K channels., Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW., Pflugers Arch. June 1, 2002; 444 (3): 411-8.


Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid., Liantonio A, Accardi A, Carbonara G, Fracchiolla G, Loiodice F, Tortorella P, Traverso S, Guida P, Pierno S, De Luca A, Camerino DC, Pusch M., Mol Pharmacol. August 1, 2002; 62 (2): 265-71.


Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney., Saulnier DM, Ghanbari H, Brändli AW., Dev Biol. August 1, 2002; 248 (1): 13-28.                    


Cloning and characterisation of amphibian ClC-3 and ClC-5 chloride channels., Schmieder S, Lindenthal S, Ehrenfeld J., Biochim Biophys Acta. November 13, 2002; 1566 (1-2): 55-66.          


Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney., Miyazaki H, Kaneko T, Uchida S, Sasaki S, Takei Y., Proc Natl Acad Sci U S A. November 26, 2002; 99 (24): 15782-7.


The chloride conductance channel ClC-K is a specific marker for the Xenopus pronephric distal tubule and duct., Vize PD., Gene Expr Patterns. June 1, 2003; 3 (3): 347-50.        


A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity., Jeck N, Waldegger P, Doroszewicz J, Seyberth H, Waldegger S., Kidney Int. January 1, 2004; 65 (1): 190-7.


Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension., Jeck N, Waldegger S, Lampert A, Boehmer C, Waldegger P, Lang PA, Wissinger B, Friedrich B, Risler T, Moehle R, Lang UE, Zill P, Bondy B, Schaeffeler E, Asante-Poku S, Seyberth H, Schwab M, Lang F., Hypertension. June 1, 2004; 43 (6): 1175-81.


Apical localization of renal K channel was not altered in mutant WNK4 transgenic mice., Yamauchi K, Yang SS, Ohta A, Sohara E, Rai T, Sasaki S, Uchida S., Biochem Biophys Res Commun. July 8, 2005; 332 (3): 750-5.


Activation and inhibition of kidney CLC-K chloride channels by fenamates., Liantonio A, Picollo A, Babini E, Carbonara G, Fracchiolla G, Loiodice F, Tortorella V, Pusch M, Camerino DC., Mol Pharmacol. January 1, 2006; 69 (1): 165-73.


Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development., Dickinson K, Leonard J, Baker JC., Dev Dyn. February 1, 2006; 235 (2): 368-81.                        


Influence of gain of function epithelial chloride channel ClC-Kb mutation on hearing thresholds., Frey A, Lampert A, Waldegger S, Jeck N, Waldegger P, Artunc F, Seebohm G, Lang UE, Kupka S, Pfister M, Hoppe J, Gerloff C, Schaeffeler E, Schwab M, Lang F., Hear Res. April 1, 2006; 214 (1-2): 68-75.


The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos., Nichane M, Van Campenhout C, Pendeville H, Voz ML, Bellefroid EJ., Gene Expr Patterns. October 1, 2006; 6 (7): 667-72.                  


Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels., Picollo A, Liantonio A, Babini E, Camerino DC, Pusch M., J Membr Biol. April 1, 2007; 216 (2-3): 73-82.


Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes., Qu C, Liang F, Smythe NM, Schulte BA., J Assoc Res Otolaryngol. June 1, 2007; 8 (2): 205-19.


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U, Pickney LM, Ozpolat BD, Wessely O., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


The prepattern transcription factor Irx3 directs nephron segment identity., Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW., Genes Dev. September 15, 2007; 21 (18): 2358-70.                


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brändli AW., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Molecular switch for CLC-K Cl- channel block/activation: optimal pharmacophoric requirements towards high-affinity ligands., Liantonio A, Picollo A, Carbonara G, Fracchiolla G, Tortorella P, Loiodice F, Laghezza A, Babini E, Zifarelli G, Pusch M, Camerino DC., Proc Natl Acad Sci U S A. January 29, 2008; 105 (4): 1369-73.


A cytoplasmic domain mutation in ClC-Kb affects long-distance communication across the membrane., Martinez GQ, Maduke M., PLoS One. July 23, 2008; 3 (7): e2746.            


CLCNKB-T481S and essential hypertension in a Ghanaian population., Sile S, Velez DR, Gillani NB, Narsia T, Moore JH, George AL, Vanoye CG, Williams SM., J Hypertens. February 1, 2009; 27 (2): 298-304.


Identification and functional analysis of novel mutations of the CLCNKB gene in Chinese patients with classic Bartter syndrome., Yu Y, Xu C, Pan X, Ren H, Wang W, Meng X, Huang F, Chen N., Clin Genet. February 1, 2010; 77 (2): 155-62.


A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels., Gradogna A, Babini E, Picollo A, Pusch M., J Gen Physiol. September 1, 2010; 136 (3): 311-23.              


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S, Ganner A, Boehlke C, Schmidt T, Arnold SJ, Schäfer T, Romaker D, Schuler J, Hoff S, Powelske C, Eifler A, Krönig C, Bullerkotte A, Nitschke R, Kuehn EW, Kim E, Burkhardt H, Brox T, Ronneberger O, Gloy J, Walz G., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


Specification of ion transport cells in the Xenopus larval skin., Quigley IK, Stubbs JL, Kintner C., Development. February 1, 2011; 138 (4): 705-14.                                          


Involvement of the eukaryotic initiation factor 6 and kermit2/gipc2 in Xenopus laevis pronephros formation., Tussellino M, De Marco N, Campanella C, Carotenuto R., Int J Dev Biol. January 1, 2012; 56 (5): 357-62.          


Alkaline pH block of CLC-K kidney chloride channels mediated by a pore lysine residue., Gradogna A, Pusch M., Biophys J. July 2, 2013; 105 (1): 80-90.


Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression., Keck M, Andrini O, Lahuna O, Burgos J, Cid LP, Sepúlveda FV, L'hoste S, Blanchard A, Vargas-Poussou R, Lourdel S, Teulon J., Hum Mutat. September 1, 2013; 34 (9): 1269-78.


Characterization of the mouse ClC-K1/Barttin chloride channel., L'Hoste S, Diakov A, Andrini O, Genete M, Pinelli L, Grand T, Keck M, Paulais M, Beck L, Korbmacher C, Teulon J, Lourdel S., Biochim Biophys Acta. November 1, 2013; 1828 (11): 2399-409.


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W, Tata A, Kühl M, Kühl SJ., Development. May 1, 2014; 141 (10): 2064-74.          


Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes., Imbrici P, Liantonio A, Gradogna A, Pusch M, Camerino DC., Biochim Biophys Acta. October 1, 2014; 1838 (10): 2484-91.


I-J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes., Gradogna A, Imbrici P, Zifarelli G, Liantonio A, Camerino DC, Pusch M., Biochim Biophys Acta. November 1, 2014; 1838 (11): 2745-56.                        


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          


Proper Notch activity is necessary for the establishment of proximal cells and differentiation of intermediate, distal, and connecting tubule in Xenopus pronephros development., Katada T, Sakurai H., Dev Dyn. April 1, 2016; 245 (4): 472-82.                  


Clinical and Genetic Spectrum of Bartter Syndrome Type 3., Seys E, Andrini O, Keck M, Mansour-Hendili L, Courand PY, Simian C, Deschenes G, Kwon T, Bertholet-Thomas A, Bobrie G, Borde JS, Bourdat-Michel G, Decramer S, Cailliez M, Krug P, Cozette P, Delbet JD, Dubourg L, Chaveau D, Fila M, Jourde-Chiche N, Knebelmann B, Lavocat MP, Lemoine S, Djeddi D, Llanas B, Louillet F, Merieau E, Mileva M, Mota-Vieira L, Mousson C, Nobili F, Novo R, Roussey-Kesler G, Vrillon I, Walsh SB, Teulon J, Blanchard A, Vargas-Poussou R., J Am Soc Nephrol. August 1, 2017; 28 (8): 2540-2552.


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD, Baldwin TA, Miller RK., Front Physiol. January 1, 2019; 10 143.                                


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S, Veschambre P, Fédou S, Rezvani HR, Thézé N, Thiébaud P., Dev Biol. March 15, 2019; 447 (2): 200-213.                                  


Modeling congenital kidney diseases in Xenopus laevis., Blackburn ATM, Miller RK., Dis Model Mech. April 9, 2019; 12 (4):       


Analysis of CLCNKB mutations at dimer-interface, calcium-binding site, and pore reveals a variety of functional alterations in ClC-Kb channel leading to Bartter syndrome., Bignon Y, Sakhi I, Bitam S, Bakouh N, Keck M, Frachon N, Paulais M, Planelles G, Teulon J, Andrini O., Hum Mutat. April 1, 2020; 41 (4): 774-785.


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC., Sci Rep. October 4, 2023; 13 (1): 16671.                                          

???pagination.result.page??? 1