Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (301) GO Terms (2) Nucleotides (253) Proteins (43) Interactants (1359) Wiki
XB-GENEPAGE-6539689

Papers associated with krt12.4



???displayGene.coCitedPapers???
54 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus., Ma P, Ren B, Yang X, Sun B, Liu X, Kong Q, Li C, Mao B., Open Biol. August 1, 2017; 7 (8):                           


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I., Front Cell Neurosci. July 21, 2017; 11 380.            


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P, Marchal L, Kodjabachian L., Elife. June 27, 2017; 6                               


Noggin is required for first pharyngeal arch differentiation in the frog Xenopus tropicalis., Young JJ, Kjolby RAS, Wu G, Wong D, Hsu SW, Harland RM., Dev Biol. June 15, 2017; 426 (2): 245-254.                


Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis., Suzuki KT, Suzuki M, Suzuki M, Shigeta M, Fortriede JD, Takahashi S, Mawaribuchi S, Yamamoto T, Taira M, Fukui A., Dev Biol. June 15, 2017; 426 (2): 384-392.


sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis., Exner CRT, Kim AY, Mardjuki SM, Harland RM., Dev Biol. May 1, 2017; 425 (1): 33-43.                                    


The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission., Hellsten SV, Hägglund MG, Eriksson MM, Fredriksson R., FEBS Open Bio. April 26, 2017; 7 (6): 730-746.              


Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure., Suzuki M, Sato M, Koyama H, Hara Y, Hayashi K, Yasue N, Imamura H, Fujimori T, Nagai T, Campbell RE, Ueno N., Development. April 1, 2017; 144 (7): 1307-1316.                            


Apolipoprotein C-I mediates Wnt/Ctnnb1 signaling during neural border formation and is required for neural crest development., Yokota C, Åstrand C, Takahashi S, Hagey DW, Stenman JM., Int J Dev Biol. January 1, 2017; 61 (6-7): 415-425.                      


Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis., Faure G, Bakouh N, Lourdel S, Odolczyk N, Premchandar A, Servel N, Hatton A, Ostrowski MK, Xu H, Saul FA, Moquereau C, Bitam S, Pranke I, Planelles G, Teulon J, Herrmann H, Roldan A, Zielenkiewicz P, Dadlez M, Lukacs GL, Sermet-Gaudelus I, Ollero M, Corringer PJ, Edelman A., J Mol Biol. July 17, 2016; 428 (14): 2898-915.


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A, Juraver-Geslin H, Gonzalez JA, Hong CS, Saint-Jeannet JP., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm., Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA., Genesis. June 1, 2016; 54 (6): 334-49.                          


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C, Kratzer MC, Wedlich D, Kashef J., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes., Kloc M, Bilinski S, Kubiak JZ., Methods Mol Biol. January 1, 2016; 1457 179-90.


Cell-Autonomous Ca(2+) Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure., Christodoulou N, Skourides PA., Cell Rep. December 15, 2015; 13 (10): 2189-202.                


Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo., Nishitani E, Li C, Lee J, Hotta H, Katayama Y, Yamaguchi M, Kinoshita T., Dev Growth Differ. December 1, 2015; 57 (9): 591-600.              


Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C., Development. October 1, 2015; 142 (19): 3416-28.                                    


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I, Mellström B, Gonzalez P, Naranjo JR, Moreau M, Leclerc C., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway., Vitorino M, Silva AC, Inácio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA., PLoS One. August 13, 2015; 10 (8): e0135504.                                    


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ, Aybar MJ., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


Kdm2a/b Lysine Demethylases Regulate Canonical Wnt Signaling by Modulating the Stability of Nuclear β-Catenin., Lu L, Gao Y, Zhang Z, Cao Q, Zhang X, Zou J, Cao Y., Dev Cell. June 22, 2015; 33 (6): 660-74.                                  


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X, Cheong SM, Amado NG, Reis AH, MacDonald BT, Zebisch M, Jones EY, Abreu JG, He X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN, Sondalle SB, Del Viso F, Baserga SJ, Khokha MK., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells., Wong KA, Trembley M, Abd Wahab S, Viczian AS., Biol Open. March 6, 2015; 4 (4): 573-83.                


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos., Yoon J, Kim JH, Lee SY, Kim S, Park JB, Lee JY, Kim J., BMB Rep. December 1, 2014; 47 (12): 673-8.        


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K, LaBonne C., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T, Kanai Y, Matsukawa S, Michiue T., Genesis. October 1, 2014; .


Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl., Rao N, Song F, Jhamb D, Wang M, Milner DJ, Price NM, Belecky-Adams TL, Palakal MJ, Cameron JA, Li B, Chen X, Stocum DL., BMC Dev Biol. July 25, 2014; 14 32.                        


Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis., Fernández JP, Agüero TH, Vega López GA, Marranzino G, Cerrizuela S, Aybar MJ., Dev Dyn. April 1, 2014; 243 (4): 527-40.              


An essential role for LPA signalling in telencephalon development., Geach TJ, Faas L, Devader C, Gonzalez-Cordero A, Tabler JM, Brunsdon H, Isaacs HV, Dale L., Development. February 1, 2014; 141 (4): 940-9.                            


Purinergic receptor-induced Ca2+ signaling in the neuroepithelium of the vomeronasal organ of larval Xenopus laevis., Dittrich K, Sansone A, Hassenklöver T, Manzini I., Purinergic Signal. January 1, 2014; 10 (2): 327-36.          


Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development., Barrionuevo MG, Aybar MJ, Aybar MJ, Tríbulo C., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.            


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM, Houston DW., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


NumbL is essential for Xenopus primary neurogenesis., Nieber F, Hedderich M, Jahn O, Pieler T, Henningfeld KA., BMC Dev Biol. October 14, 2013; 13 36.                          


Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis., Wang S, Cha SW, Zorn AM, Wylie C., PLoS One. October 8, 2013; 8 (10): e76854.                      


On becoming neural: what the embryo can tell us about differentiating neural stem cells., Moody SA, Klein SL, Karpinski BA, Maynard TM, Lamantia AS., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.              


Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL., Development. June 1, 2013; 140 (11): 2409-21.                                


Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling., Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, Newton K, Kakunda M, Liu J, Yu C, Hymowitz SG, Hongo JA, Wynshaw-Boris A, Polakis P, Harland RM, Dixit VM., Science. March 22, 2013; 339 (6126): 1441-5.


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY, Reversade B, Knowles BB, Solter D., Development. February 1, 2013; 140 (4): 853-60.                                              


The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis., Parlier D, Moers V, Van Campenhout C, Preillon J, Leclère L, Saulnier A, Sirakov M, Busengdal H, Kricha S, Marine JC, Rentzsch F, Bellefroid EJ., Dev Biol. January 1, 2013; 373 (1): 39-52.                              


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G, Rupp RA., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin., Meier NT, Haslam IS, Pattwell DM, Zhang GY, Emelianov V, Paredes R, Debus S, Augustin M, Funk W, Amaya E, Kloepper JE, Hardman MJ, Paus R., PLoS One. January 1, 2013; 8 (9): e73596.                


Pou-V factor Oct25 regulates early morphogenesis in Xenopus laevis., Julier A, Goll C, Korte B, Knöchel W, Wacker SA., Dev Growth Differ. September 1, 2012; 54 (7): 702-16.              


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH, Fernández JP, López GA, Tríbulo C, Aybar MJ., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network., Liu C, Goswami M, Talley J, Chesser-Martinez PL, Lou CH, Sater AK., Differentiation. April 1, 2012; 83 (4): 210-9.                  


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M, Ahrens K, Rink E, Peter A, Schlosser G., Development. March 1, 2012; 139 (6): 1175-87.                    


ΔNp63 is regulated by BMP4 signaling and is required for early epidermal development in Xenopus., Tríbulo C, Guadalupe Barrionuevo M, Agüero TH, Sánchez SS, Calcaterra NB, Aybar MJ., Dev Dyn. February 1, 2012; 241 (2): 257-69.            


The LIM adaptor protein LMO4 is an essential regulator of neural crest development., Ochoa SD, Salvador S, LaBonne C., Dev Biol. January 15, 2012; 361 (2): 313-25.              


Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e., Cha SW, McAdams M, Kormish J, Wylie C, Kofron M., PLoS One. January 1, 2012; 7 (7): e41782.            

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???