Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (57) GO Terms (8) Nucleotides (244) Proteins (63) Interactants (429) Wiki

Papers associated with raf1

Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 50 of 57 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Nucleotide sequence of Xenopus C-raf coding region., Le Guellec R, Le Guellec K, Paris J, Philippe M., Nucleic Acids Res. November 11, 1988; 16 (21): 10357.

Changes in the polyadenylation of specific stable RNA during the early development of Xenopus laevis., Paris J, Osborne HB, Couturier A, Le Guellec R, Philippe M., Gene. December 10, 1988; 72 (1-2): 169-76.

raf oncogenes in carcinogenesis., Storm SM, Brennscheidt U, Sithanandam G, Rapp UR., Crit Rev Oncog. January 1, 1990; 2 (1): 1-8.

Xenopus c-raf proto-oncogene: cloning and expression during oogenesis and early development., Le Guellec R, Couturier A, Le Guellec K, Paris J, Le Fur N, Philippe M., Biol Cell. January 1, 1991; 72 (1-2): 39-45.

Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF., MacNicol AM, Muslin AJ, Williams LT., Cell. May 7, 1993; 73 (3): 571-83.

Raf-1 protein kinase is important for progesterone-induced Xenopus oocyte maturation and acts downstream of mos., Muslin AJ, MacNicol AM, Williams LT., Mol Cell Biol. July 1, 1993; 13 (7): 4197-202.

Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase., Fabian JR, Daar IO, Morrison DK., Mol Cell Biol. November 1, 1993; 13 (11): 7170-9.

Mesoderm induction by activin requires FGF-mediated intracellular signals., LaBonne C, Whitman M., Development. February 1, 1994; 120 (2): 463-72.

R-ras interacts with rasGAP, neurofibromin and c-raf but does not regulate cell growth or differentiation., Rey I, Taylor-Harris P, van Erp H, Hall A., Oncogene. March 1, 1994; 9 (3): 685-92.

A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function., Fabian JR, Vojtek AB, Cooper JA, Morrison DK., Proc Natl Acad Sci U S A. June 21, 1994; 91 (13): 5982-6.

Characterization of recombinant Xenopus MAP kinase kinases mutated at potential phosphorylation sites., Gotoh Y, Matsuda S, Takenaka K, Hattori S, Iwamatsu A, Ishikawa M, Kosako H, Nishida E., Oncogene. July 1, 1994; 9 (7): 1891-8.

Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras-GTP., Scheffler JE, Waugh DS, Bekesi E, Kiefer SE, LoSardo JE, Neri A, Prinzo KM, Tsao KL, Wegrzynski B, Emerson SD., J Biol Chem. September 2, 1994; 269 (35): 22340-6.

Activation of Raf-1 by 14-3-3 proteins., Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT., Nature. October 13, 1994; 371 (6498): 612-4.

MAP kinase-dependent pathways in cell cycle control., Pelech SL, Charest DL., Prog Cell Cycle Res. January 1, 1995; 1 33-52.

Raf-1 N-terminal sequences necessary for Ras-Raf interaction and signal transduction., Pumiglia K, Chow YH, Fabian J, Morrison D, Decker S, Jove R., Mol Cell Biol. January 1, 1995; 15 (1): 398-406.

Two distinct Raf domains mediate interaction with Ras., Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S, Bell RM, Der CJ., J Biol Chem. April 28, 1995; 270 (17): 9809-12.

Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation., Galaktionov K, Jessus C, Beach D., Genes Dev. May 1, 1995; 9 (9): 1046-58.

14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner., Michaud NR, Fabian JR, Mathes KD, Morrison DK., Mol Cell Biol. June 1, 1995; 15 (6): 3390-7.

Mesoderm induction in Xenopus caused by activation of MAP kinase., Umbhauer M, Marshall CJ, Mason CS, Old RW, Smith JC., Nature. July 6, 1995; 376 (6535): 58-62.

Mechanisms regulating Raf-1 activity in signal transduction pathways., Morrison DK., Mol Reprod Dev. December 1, 1995; 42 (4): 507-14.

Regulation of Raf-1-dependent signaling during early Xenopus development., MacNicol AM, Muslin AJ, Howard EL, Kikuchi A, MacNicol MC, Williams LT., Mol Cell Biol. December 1, 1995; 15 (12): 6686-93.

Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development., Xu RH, Dong Z, Maeno M, Kim J, Suzuki A, Ueno N, Sredni D, Colburn NH, Kung HF., Proc Natl Acad Sci U S A. January 23, 1996; 93 (2): 834-8.          

Inhibition of Raf/MAPK signaling in Xenopus oocyte extracts by Raf-1-specific peptides., Radziwill G, Steinhusen U, Aitken A, Moelling K., Biochem Biophys Res Commun. October 3, 1996; 227 (1): 20-6.

The dominant negative effects of H-Ras harboring a Gly to Ala mutation at position 60., Sung YJ, Hwang MC, Hwang YW., J Biol Chem. November 29, 1996; 271 (48): 30537-43.

Cyclic AMP inhibitors inhibits PDGF-stimulated mitogen-activated protein kinase activity in rat aortic smooth muscle cells via inactivation of c-Raf-1 kinase and induction of MAP kinase phosphatase-1., Plevin R, Malarkey K, Aidulis D, McLees A, Gould GW., Cell Signal. January 1, 1997; 9 (3-4): 323-8.

Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila., Cutler RE, Morrison DK., EMBO J. April 15, 1997; 16 (8): 1953-60.

Characterization of the intracellular signalling pathways that underlie growth-factor-stimulated glucose transport in Xenopus oocytes: evidence for ras- and rho-dependent pathways of phosphatidylinositol 3-kinase activation., Thomson FJ, Jess TJ, Moyes C, Plevin R, Gould GW., Biochem J. August 1, 1997; 325 ( Pt 3) 637-43.

The immunophilin FKBP65 forms an association with the serine/threonine kinase c-Raf-1., Coss MC, Stephens RM, Morrison DK, Winterstein D, Smith LM, Simek SL., Cell Growth Differ. January 1, 1998; 9 (1): 41-8.

14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove., Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC., J Biol Chem. June 26, 1998; 273 (26): 16305-10.

Autoregulation of the Raf-1 serine/threonine kinase., Cutler RE, Stephens RM, Saracino MR, Morrison DK., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9214-9.

Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity., Winkler DG, Cutler RE, Drugan JK, Campbell S, Morrison DK, Cooper JA., J Biol Chem. August 21, 1998; 273 (34): 21578-84.

Inactivation of protein kinase A is not required for c-mos translation during meiotic maturation of Xenopus oocytes., Faure S, Morin N, Dorée M., Oncogene. September 10, 1998; 17 (10): 1215-21.

Raf-1 kinase, a potential regulator of intracellular pH in Xenopus oocytes., Kang MG, Kulisz A, Wasserman WJ., Biol Cell. October 1, 1998; 90 (6-7): 477-85.

Inhibition of small G proteins by clostridium sordellii lethal toxin activates cdc2 and MAP kinase in Xenopus oocytes., Rime H, Talbi N, Popoff MR, Suziedelis K, Jessus C, Ozon R., Dev Biol. December 15, 1998; 204 (2): 592-602.

In vitro binding of free cdc2 and raf kinase to membrane vesicles: a possible new regulatory mechanism for cdc2 kinase activation in Xenopus oocyte., De Smedt V, Crozet N, Jessus C., Microsc Res Tech. April 1, 1999; 45 (1): 13-30.

Disruption of the 14-3-3 binding site within the B-Raf kinase domain uncouples catalytic activity from PC12 cell differentiation., MacNicol MC, Muslin AJ, MacNicol AM., J Biol Chem. February 11, 2000; 275 (6): 3803-9.

Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR)., Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK., J Mol Biol. January 18, 2002; 315 (3): 435-46.

Signalling pathways in oocyte meiotic maturation., Schmitt A, Nebreda AR., J Cell Sci. June 15, 2002; 115 (Pt 12): 2457-9.  

SNT1/FRS2 mediates germinal vesicle breakdown induced by an activated FGF receptor1 in Xenopus oocytes., Mood K, Friesel R, Daar IO., J Biol Chem. September 6, 2002; 277 (36): 33196-204.

Role of 14-3-3 proteins in early Xenopus development., Wu C, Muslin AJ., Mech Dev. November 1, 2002; 119 (1): 45-54.            

Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition., Tran NH, Frost JA., J Biol Chem. March 28, 2003; 278 (13): 11221-6.

Cation diffusion facilitator proteins modulate Raf-1 activity., Jirakulaporn T, Muslin AJ., J Biol Chem. June 25, 2004; 279 (26): 27807-15.

Regulation of Raf-1 by direct feedback phosphorylation., Dougherty MK, Müller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK., Mol Cell. January 21, 2005; 17 (2): 215-24.

Differential roles of p39Mos-Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes., Bodart JF, Baert FY, Sellier C, Duesbery NS, Flament S, Vilain JP., Dev Biol. July 15, 2005; 283 (2): 373-83.

Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway., Adler V, Qu Y, Smith SJ, Izotova L, Pestka S, Kung HF, Lin M, Friedman FK, Chie L, Chung D, Boutjdir M, Pincus MR., Biochemistry. August 16, 2005; 44 (32): 10784-95.

Oncogenic Met receptor induces cell-cycle progression in Xenopus oocytes independent of direct Grb2 and Shc binding or Mos synthesis, but requires phosphatidylinositol 3-kinase and Raf signaling., Mood K, Saucier C, Ishimura A, Bong YS, Lee HS, Park M, Daar IO., J Cell Physiol. April 1, 2006; 207 (1): 271-85.

B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts., Yue J, Xiong W, Ferrell JE., Oncogene. June 1, 2006; 25 (23): 3307-15.

CK2 Is a component of the KSR1 scaffold complex that contributes to Raf kinase activation., Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK., Curr Biol. January 23, 2007; 17 (2): 179-84.

Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis., Malik AI, Storey KB., J Exp Biol. August 1, 2009; 212 (Pt 16): 2595-603.

B-Raf and C-Raf are required for melanocyte stem cell self-maintenance., Valluet A, Druillennec S, Barbotin C, Dorard C, Monsoro-Burq AH, Larcher M, Pouponnot C, Baccarini M, Larue L, Eychène A., Cell Rep. October 25, 2012; 2 (4): 774-80.

Page(s): 1 2 Next