Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (9) GO Terms (3) Nucleotides (63) Proteins (41) Interactants (121) Wiki
XB-GENEPAGE-982138

Papers associated with adam12



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development., Alfandari D, Alfandari D, Wolfsberg TG, White JM, DeSimone DW., Dev Biol. February 15, 1997; 182 (2): 314-30.      


Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity., Yoshinaka T, Nishii K, Yamada K, Sawada H, Nishiwaki E, Smith K, Yoshino K, Ishiguro H, Higashiyama S., Gene. January 9, 2002; 282 (1-2): 227-36.


ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin., Gaultier A, Cousin H, Darribère T, Alfandari D, Alfandari D., J Biol Chem. June 28, 2002; 277 (26): 23336-44.


Conservation and divergence of ADAM family proteins in the Xenopus genome., Wei S, Whittaker CA, Xu G, Bridges LC, Shah A, White JM, Desimone DW., BMC Evol Biol. July 14, 2010; 10 211.                


Phylogenetic and molecular evolution of the ADAM (A Disintegrin And Metalloprotease) gene family from Xenopus tropicalis, to Mus musculus, Rattus norvegicus, and Homo sapiens., Long J, Li M, Ren Q, Zhang C, Fan J, Duan Y, Chen J, Li B, Deng L., Gene. October 1, 2012; 507 (1): 36-43.        


Hmga2 is required for neural crest cell specification in Xenopus laevis., Macrì S, Simula L, Pellarin I, Pegoraro S, Onorati M, Sgarra R, Manfioletti G, Vignali R., Dev Biol. March 1, 2016; 411 (1): 25-37.                                        


Xenopus ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13., Li J, Perfetto M, Neuner R, Bahudhanapati H, Christian L, Mathavan K, Bridges LC, Alfandari D, Alfandari D, Wei S., Development. April 4, 2018; 145 (7):                         


Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos., Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K, Vleminckx K., Sci Rep. September 4, 2020; 10 (1): 14662.                      


CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping., Naert T, Tulkens D, Van Nieuwenhuysen T, Przybyl J, Demuynck S, van de Rijn M, Al-Jazrawe M, Alman BA, Coucke PJ, De Leeneer K, Vanhove C, Savvides SN, Creytens D, Vleminckx K, Vleminckx K., Proc Natl Acad Sci U S A. November 23, 2021; 118 (47):                             

???pagination.result.page??? 1