Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (54) GO Terms (7) Nucleotides (202) Proteins (55) Interactants (895) Wiki
XB-GENEPAGE-487351

Papers associated with foxa1



???displayGene.coCitedPapers???
6 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3., Durant-Vesga J, Suzuki N, Ochi H, Le Bouffant R, Eschstruth A, Ogino H, Umbhauer M, Riou JF., Dev Biol. January 1, 2023; 493 17-28.


The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during Xenopus lung development., Rankin SA, Rankin SA, Zorn AM., Dev Growth Differ. September 1, 2022; 64 (7): 347-361.            


Cell landscape of larval and adult Xenopus laevis at single-cell resolution., Liao Y, Ma L, Guo Q, E W, Fang X, Yang L, Ruan F, Wang J, Zhang P, Sun Z, Chen H, Lin Z, Wang X, Wang X, Sun H, Fang X, Zhou Y, Chen M, Shen W, Guo G, Han X., Nat Commun. July 25, 2022; 13 (1): 4306.                                                        


Mapping single-cell atlases throughout Metazoa unravels cell type evolution., Tarashansky AJ, Musser JM, Khariton M, Li P, Arendt D, Quake SR, Wang B., Elife. May 4, 2021; 10                             


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. May 3, 2021; 40 (9): e104913.                        


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.          


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S, Chaturvedi P, Rankin SA, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM., Elife. September 7, 2020; 9                           


ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia., Haas M, Gómez Vázquez JL, Sun DI, Tran HT, Brislinger M, Tasca A, Shomroni O, Vleminckx K, Vleminckx K, Walentek P., Cell Rep. September 24, 2019; 28 (13): 3338-3352.e6.                              


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA, McCracken KW, Luedeke DM, Han L, Wells JM, Shannon JM, Zorn AM., Dev Biol. February 1, 2018; 434 (1): 121-132.          


Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis., Walentek P., Methods Mol Biol. January 1, 2018; 1865 251-263.


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ., Dev Biol. June 15, 2017; 426 (2): 409-417.        


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


The role of nitric oxide during embryonic epidermis development of Xenopus laevis., Tomankova S, Abaffy P, Sindelka R., Biol Open. June 15, 2017; 6 (6): 862-871.                        


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM, Paraiso KD, Blitz IL, Cho KWY., Semin Cell Dev Biol. June 1, 2017; 66 12-24.    


What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia., Walentek P, Quigley IK., Genesis. January 1, 2017; 55 (1-2):       


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. October 20, 2016; 538 (7625): 336-343.                              


Controlled levels of canonical Wnt signaling are required for neural crest migration., Maj E, Künneke L, Loresch E, Grund A, Melchert J, Pieler T, Aspelmeier T, Borchers A., Dev Biol. September 1, 2016; 417 (1): 77-90.                          


A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification., Rankin SA, Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM., Cell Rep. June 28, 2016; 16 (1): 66-78.                                              


Quantification of transcription factor-DNA binding affinity in a living cell., Belikov S, Berg OG, Wrange Ö., Nucleic Acids Res. April 20, 2016; 44 (7): 3045-58.            


Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways., Noiret M, Mottier S, Angrand G, Gautier-Courteille C, Lerivray H, Viet J, Paillard L, Mereau A, Hardy S, Audic Y., Dev Biol. January 15, 2016; 409 (2): 489-501.                


ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia., Walentek P, Beyer T, Hagenlocher C, Müller C, Feistel K, Schweickert A, Harland RM, Blum M., Dev Biol. December 15, 2015; 408 (2): 292-304.                                


BMP signalling controls the construction of vertebrate mucociliary epithelia., Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L., Development. July 1, 2015; 142 (13): 2352-63.                        


Hhex and Cer1 mediate the Sox17 pathway for cardiac mesoderm formation in embryonic stem cells., Liu Y, Kaneda R, Leja TW, Subkhankulova T, Tolmachov O, Minchiotti G, Schwartz RJ, Barahona M, Schneider MD., Stem Cells. June 1, 2014; 32 (6): 1515-26.              


A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis., Dubaissi E, Rousseau K, Lea R, Soto X, Nardeosingh S, Schweickert A, Amaya E, Thornton DJ, Papalopulu N., Development. April 1, 2014; 141 (7): 1514-25.                                


A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles., Walentek P, Bogusch S, Thumberger T, Vick P, Dubaissi E, Beyer T, Blum M, Schweickert A., Development. April 1, 2014; 141 (7): 1526-33.                        


Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KW, Nie Q., BMC Syst Biol. January 8, 2014; 8 3.                  


FoxA1 corrupts the antiandrogenic effect of bicalutamide but only weakly attenuates the effect of MDV3100 (Enzalutamide™)., Belikov S, Öberg C, Jääskeläinen T, Rahkama V, Palvimo JJ, Wrange Ö., Mol Cell Endocrinol. January 5, 2013; 365 (1): 95-107.


Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus., Rankin SA, Rankin SA, Gallas AL, Neto A, Gómez-Skarmeta JL, Zorn AM., Development. August 1, 2012; 139 (16): 3010-20.                                                                                


FoxA1 and glucocorticoid receptor crosstalk via histone H4K16 acetylation at a hormone regulated enhancer., Belikov S, Holmqvist PH, Astrand C, Wrange Ö., Exp Cell Res. January 1, 2012; 318 (1): 61-74.


Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization., Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G, Yamamoto H, Li J, Kirchner K, Hoffmann C, Stern P, Kikuchi A, Schambony A, Weidinger G., Dev Cell. December 13, 2011; 21 (6): 1129-43.        


A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling., Peyrot SM, Wallingford JB, Harland RM., Dev Biol. April 15, 2011; 352 (2): 254-66.                              


Specification of ion transport cells in the Xenopus larval skin., Quigley IK, Stubbs JL, Kintner C., Development. February 1, 2011; 138 (4): 705-14.                                          


Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells., Wen L, Yang Y, Yang Y, Wang Y, Xu A, Wu D, Chen Y, Chen Y., Dev Dyn. August 1, 2010; 239 (8): 2198-207.                                          


FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter., Belikov S, Astrand C, Wrange O., Mol Cell Biol. October 1, 2009; 29 (20): 5413-25.


Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM, Kim SK, Abitua PB, Park TJ, Herrington ER, Kitayama A, Grow MW, Ueno N, Wallingford JB., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C, Acuña G, Ellwanger K, Niehrs C, Mayor R., Dev Biol. September 15, 2007; 309 (2): 208-21.              


Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis., Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS., BMC Biol. July 25, 2007; 5 31.                


Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue., Afelik S, Chen Y, Pieler T., Genes Dev. June 1, 2006; 20 (11): 1441-6.                        


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D, Kirilenko P, Rankin S, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM., Development. May 1, 2006; 133 (10): 1955-66.              


Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development., Dickinson K, Leonard J, Baker JC., Dev Dyn. February 1, 2006; 235 (2): 368-81.                        


FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription., Holmqvist PH, Belikov S, Zaret KS, Wrange O., Exp Cell Res. April 1, 2005; 304 (2): 593-603.


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays., Arima K, Shiotsugu J, Niu R, Khandpur R, Martinez M, Shin Y, Koide T, Cho KW, Kitayama A, Ueno N, Chandraratna RA, Blumberg B., Dev Dyn. February 1, 2005; 232 (2): 414-31.                          


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS, Knöchel W., Gene. January 3, 2005; 344 21-32.      


Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes., Sinner D, Rankin S, Rankin S, Lee M, Zorn AM., Development. July 1, 2004; 131 (13): 3069-80.                      


Molecular components of the endoderm specification pathway in Xenopus tropicalis., D'Souza A, Lee M, Taverner N, Mason J, Carruthers S, Smith JC, Amaya E, Papalopulu N, Zorn AM., Dev Dyn. January 1, 2003; 226 (1): 118-27.                            


Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis., Ribisi S, Mariani FV, Aamar E, Lamb TM, Frank D, Harland RM., Dev Biol. November 1, 2000; 227 (1): 183-96.            


Endoderm patterning by the notochord: development of the hypochord in Xenopus., Cleaver O, Seufert DW, Krieg PA., Development. February 1, 2000; 127 (4): 869-79.              


Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the alpha-fetoprotein gene., Crowe AJ, Sang L, Li KK, Lee KC, Spear BT, Barton MC., J Biol Chem. August 27, 1999; 274 (35): 25113-20.

???pagination.result.page??? 1 2 ???pagination.result.next???