Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (261) GO Terms (7) Nucleotides (120) Proteins (54) Interactants (309) Wiki
XB-GENEPAGE-483702

Papers associated with pomc



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis., Jansen EJ, Holling TM, van Herp F, Martens GJ., FEBS Lett. April 10, 2002; 516 (1-3): 201-7.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM, Kramer BM, Cornelisse LN, Scheenen WJ, Jenks BG, Roubos EW., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Five amino acids of the Xenopus laevis CRF (corticotropin-releasing factor) type 2 receptor mediate differential binding of CRF ligands in comparison with its human counterpart., Dautzenberg FM, Higelin J, Brauns O, Butscha B, Hauger RL., Mol Pharmacol. May 1, 2002; 61 (5): 1132-9.


Developmental changes in interrenal responsiveness in anuran amphibians., Glennemeier KA, Denver RJ., Integr Comp Biol. July 1, 2002; 42 (3): 565-73.


Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis., Bidaud I, Lory P, Nicolas P, Bulant M, Ladram A., Eur J Biochem. September 1, 2002; 269 (18): 4566-76.


Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals., Seasholtz AF, Valverde RA, Denver RJ., J Endocrinol. October 1, 2002; 175 (1): 89-97.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM, Claassen IE, Westphal NJ, Jansen M, Tuinhof R, Jenks BG, Roubos EW., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF, Vrieze MJ, Wirsig-Wiechmann CR., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist., Ignar DM, Andrews JL, Jansen M, Eilert MM, Pink HM, Lin P, Sherrill RG, Szewczyk JR, Conway JG., Peptides. May 1, 2003; 24 (5): 709-16.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ, Ouwens DT, Scheenen WJ, Limburg V, Gellekink H, Bai M, Roubos EW, Jenks BG., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Molecular evidence of organic ion transporters in the rat adrenal cortex with adrenocorticotropin-regulated zonal expression., Béery E, Middel P, Bahn A, Willenberg HS, Hagos Y, Koepsell H, Bornstein SR, Müller GA, Burckhardt G, Steffgen J., Endocrinology. October 1, 2003; 144 (10): 4519-26.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC, Meijer HK, Humbel BM, Jenks BG, Roubos EW., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Ion transport across Xenopus alveolar epithelium is regulated by extracellular ATP, UTP and adenosine., Fronius M, Berk A, Clauss W, Schnizler M., Respir Physiol Neurobiol. January 15, 2004; 139 (2): 133-44.


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L, Brown DD., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ, Vaudry H, Denver RJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


Mutational analysis of evolutionarily conserved ACTH residues., Costa JL, Bui S, Reed P, Dores RM, Brennan MB, Hochgeschwender U., Gen Comp Endocrinol. March 1, 2004; 136 (1): 12-6.


A cell-specific transgenic approach in Xenopus reveals the importance of a functional p24 system for a secretory cell., Bouw G, Van Huizen R, Jansen EJ, Martens GJ., Mol Biol Cell. March 1, 2004; 15 (3): 1244-53.


Binding differences of human and amphibian corticotropin-releasing factor type 1 (CRF(1)) receptors: identification of amino acids mediating high-affinity astressin binding and functional antagonism., Dautzenberg FM, Wille S., Regul Pept. May 15, 2004; 118 (3): 165-73.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC, Denver RJ., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG, Denver RJ., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor., de Groef B, Grommen SV, Mertens I, Schoofs L, Kühn ER, Darras VM., Gen Comp Endocrinol. August 1, 2004; 138 (1): 89-95.


Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii)., Crespi EJ, Denver RJ., Horm Behav. November 1, 2004; 46 (4): 399-410.


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM, Seufert DW, Nekkalapudi S, Prescott NL, Kelly LE, Jamrich M., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.            


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ, Jenks BG, Roubos EW, Scheenen WJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ, Scheenen WJ, Roubos EW, Jenks BG., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Analysis of Xenopus melanotrope cell size and POMC-gene expression., Corstens GJ, Roubos EW, Jenks BG, Van Erp PE., Ann N Y Acad Sci. April 1, 2005; 1040 269-72.


Expression of proopiomelanocortin and its cleavage enzyme genes in Rana esculenta and Xenopus laevis gonads., Carotti M, Nabissi M, Mosconi G, Gangnon F, Lihrmann I, Vaudry H, Polzonetti-Magni AM., Ann N Y Acad Sci. April 1, 2005; 1040 261-3.


Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis., Calle M, Claassen IE, Veening JG, Kozicz T, Roubos EW, Barendregt HP., Ann N Y Acad Sci. April 1, 2005; 1040 249-52.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW, Scheenen WJ, Jenks BG., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L, Bidaud I, Bulant M, Jenks BG, Ouwens DT, Jégou S, Ladram A, Roubos EW, Nicolas P, Tonon MC, Vaudry H., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level., Van Herp F, Coenen T, Geurts HP, Janssen GJ, Martens GJ., J Microsc. April 1, 2005; 218 (Pt 1): 79-83.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M, Corstens GJ, Wang L, Kozicz T, Denver RJ, Barendregt HP, Roubos EW., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Dietary exposure to Aroclor 1254 alters gene expression in Xenopus laevis frogs., Jelaso AM, DeLong C, Means J, Ide CF., Environ Res. May 1, 2005; 98 (1): 64-72.


Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing., Andersson TP, Filippini D, Suska A, Johansson TL, Svensson SP, Lundström I., Biosens Bioelectron. July 15, 2005; 21 (1): 111-20.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L, Humbel BM, Roubos EW., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Expression of neuroserpin is linked to neuroendocrine cell activation., de Groot DM, Martens GJ., Endocrinology. September 1, 2005; 146 (9): 3791-9.


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC, Crespi EJ, Dautzenberg FM, Denver RJ., Endocrinology. November 1, 2005; 146 (11): 4851-60.


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells., van Rosmalen JW, Martens GJ., FEBS J. February 1, 2006; 273 (4): 847-62.


Prion protein mRNA expression in Xenopus laevis: no induction during melanotrope cell activation., van Rosmalen JW, Born JM, Martens GJ., Dev Biol. February 23, 2006; 1075 (1): 20-5.        


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC, Denver RJ., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: coordination of ligand, receptor, and binding protein in tail muscle cell survival., Boorse GC, Kholdani CA, Seasholtz AF, Denver RJ., Endocrinology. March 1, 2006; 147 (3): 1498-507.


Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo., Aspengren S, Hedberg D, Wallin M., Pigment Cell Res. April 1, 2006; 19 (2): 136-45.


The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element., Collin RW, Martens GJ., Dev Biol. May 4, 2006; 1087 (1): 41-51.            


Evidence for the role of adenosine 5'-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models., Omer S, Meredith D, Morris JF, Christian HC., Endocrinology. July 1, 2006; 147 (7): 3219-27.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M, Kozicz T, van der Linden E, Desfeux A, Veening JG, Barendregt HP, Roubos EW., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis., Lehigh Shirey EA, Jelaso Langerveld A, Mihalko D, Ide CF., Environ Res. October 1, 2006; 102 (2): 205-14.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M, Jenks BG, Corstens GJ, Veening JG, Barendregt HP, Roubos EW., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor., de Groot DM, Coenen AJ, Verhofstad A, van Herp F, Martens GJ., Mol Endocrinol. November 1, 2006; 20 (11): 2987-98.


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG, Kidane AH, Scheenen WJ, Roubos EW., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???