Results 1 - 50 of 109 results
Discovery of a potent and long-acting Xenopus GLP-1-based GLP-1/glucagon/Y2 receptor triple agonist. , Yuan Y , Yan Z, Lao Q, Jiang N, Wu S , Lu Q, Han J , Zhao S., Eur J Med Chem. February 5, 2023; 247 115036.
Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/ glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity. , Li Q , Yang Q, Han J , Liu X, Fu J, Yin J., Chin J Nat Med. November 1, 2022; 20 (11): 863-872.
A GLP-1/glucagon (GCG)/CCK2 receptors tri-agonist provides new therapy for obesity and diabetes. , Zhao S, Yan Z, Du Y, Li Z, Tang C , Jing L, Sun L, Yang Q, Tang X, Yuan Y , Han J , Jiang N., Br J Pharmacol. September 1, 2022; 179 (17): 4360-4377.
Nutritional control of thyroid morphogenesis through gastrointestinal hormones. , Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, Fujimura S, Nakashima K, Shindo A., Curr Biol. April 11, 2022; 32 (7): 1485-1496.e4.
Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. , Yang Q, Zhou F, Tang X, Wang J , Feng H, Jiang W, Jin L, Jiang N, Yuan Y , Han J , Yan Z., Eur J Med Chem. April 5, 2022; 233 114214.
Stapled, Long-Acting Xenopus GLP-1-Based Dual GLP-1/Glucagon Receptor Agonists with Potent Therapeutic Efficacy for Metabolic Disease. , Han C, Sun Y, Yang Q, Zhou F, Chen X, Wu L, Sun L, Han J ., Mol Pharm. August 2, 2021; 18 (8): 2906-2923.
Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/ glucagon receptor agonists. , Jiang N, Jing L, Li Q , Su S, Yang Q, Zhou F, Chen X, Han J , Tang C , Tang W., Eur J Med Chem. February 15, 2021; 212 113118.
Stapled and Xenopus Glucagon-Like Peptide 1 (GLP-1)-Based Dual GLP-1/Gastrin Receptor Agonists with Improved Metabolic Benefits in Rodent Models of Obesity and Diabetes. , Chen X, Fu J, Zhou F, Yang Q, Wang J , Feng H, Jiang W, Jin L, Tang X, Jiang N, Yin J, Han J ., J Med Chem. November 12, 2020; 63 (21): 12595-12613.
Rational design and biological evaluation of gemfibrozil modified Xenopus GLP-1 derivatives as long-acting hypoglycemic agents. , Han J , Fu J, Yang Q, Zhou F, Chen X, Li C, Yin J., Eur J Med Chem. July 15, 2020; 198 112389.
The chronic administration of two novel long-acting Xenopus glucagon-like peptide-1 analogs xGLP159 and xGLP296 potently improved systemic metabolism and glycemic control in rodent models. , Han J , Meng T, Chen X, Han Y, Fu J, Zhou F, Fei Y, Li C., FASEB J. June 1, 2019; 33 (6): 7113-7125.
Xenopus slc7a5 is essential for notochord function and eye development. , Katada T, Sakurai H., Mech Dev. February 1, 2019; 155 48-59.
Lipidation and conformational constraining for prolonging the effects of peptides: Xenopus glucagon-like peptide 1 analogues with potent and long-acting hypoglycemic activity. , Han J , Huang Y, Chen X, Zhou F, Fei Y, Fu J., Eur J Pharm Sci. October 15, 2018; 123 111-123.
Rational design of dimeric lipidated Xenopus glucagon-like peptide 1 analogues as long-acting antihyperglycaemic agents. , Han J , Huang Y, Chen X, Zhou F, Fei Y, Fu J., Eur J Med Chem. September 5, 2018; 157 177-187.
Lithocholic Acid-Based Peptide Delivery System for an Enhanced Pharmacological and Pharmacokinetic Profile of Xenopus GLP-1 Analogs. , Han J , Chen X, Zhao L, Fu J, Sun L, Zhang Y , Zhou F, Fei Y., Mol Pharm. July 2, 2018; 15 (7): 2840-2856.
Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis. , Gere-Becker MB, Pommerenke C, Lingner T, Pieler T ., Development. June 8, 2018; 145 (12):
Preparation and Pharmaceutical Characterizations of Lipidated Dimeric Xenopus Glucagon-Like Peptide-1 Conjugates. , Han J , Zhou F, Fei Y, Chen X, Fu J, Qian H., Bioconjug Chem. February 21, 2018; 29 (2): 390-402.
Xenopus-derived glucagon-like peptide-1 and polyethylene-glycosylated glucagon-like peptide-1 receptor agonists: long-acting hypoglycaemic and insulinotropic activities with potential therapeutic utilities. , Han J , Fei Y, Zhou F, Chen X, Zhang Y , Liu L, Fu J., Br J Pharmacol. February 1, 2018; 175 (3): 544-557.
Synthesis and pharmaceutical characterization of site specific mycophenolic acid-modified Xenopus glucagon-like peptide-1 analogs. , Han J , Fu J, Sun L, Han Y, Mao Q, Liao F, Zheng X, Zhu K ., Medchemcomm. November 7, 2017; 9 (1): 67-80.
Micellar Nanomedicine of Novel Fatty Acid Modified Xenopus Glucagon-like Peptide-1: Improved Physicochemical Characteristics and Therapeutic Utilities for Type 2 Diabetes. , Han J , Fei Y, Zhou F, Chen X, Zheng W, Fu J., Mol Pharm. November 6, 2017; 14 (11): 3954-3967.
Xenopus GLP-1-inspired discovery of novel GLP-1 receptor agonists as long-acting hypoglycemic and insulinotropic agents with significant therapeutic potential. , Han J , Chen X, Wang Y, Fei Y, Zhou F, Zhang Y , Liu L, Si P, Fu J., Biochem Pharmacol. October 15, 2017; 142 155-167.
Design, synthesis and biological evaluation of PEGylated Xenopus glucagon-like peptide-1 derivatives as long-acting hypoglycemic agents. , Han J , Wang Y, Meng Q, Li G, Huang F, Wu S , Fei Y, Zhou F, Fu J., Eur J Med Chem. May 26, 2017; 132 81-89.
Tumor protein Tctp regulates axon development in the embryonic visual system. , Roque CG, Wong HH, Lin JQ, Holt CE ., Development. April 1, 2016; 143 (7): 1134-48.
Functional Pairing of Class B1 Ligand- GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/ Glucagon Receptor Family. , On JS, Duan C, Chow BK, Lee LT ., Mol Biol Evol. August 1, 2015; 32 (8): 2048-59.
Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. , Lee EY , Kaneko S, Jutabha P, Zhang X, Seino S, Jomori T, Anzai N, Miki T., J Endocrinol. March 1, 2015; 224 (3): 205-14.
Magainin-AM2 improves glucose homeostasis and beta cell function in high-fat fed mice. , Ojo OO, Srinivasan DK, Owolabi BO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochim Biophys Acta. January 1, 2015; 1850 (1): 80-7.
A Novel Long-Acting Glucagon-Like Peptide-1 Agonist with Improved Efficacy in Insulin Secretion and β-Cell Growth. , Kim HY , Hwang JI, Moon MJ, Seong JY., Endocrinol Metab (Seoul). September 1, 2014; 29 (3): 320-7.
A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates. , Park CR, Moon MJ, Park S, Kim DK, Cho EB, Millar RP, Hwang JI, Seong JY., PLoS One. June 11, 2013; 8 (6): e65420.
Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells. , Ojo OO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.
Discovery of a novel glucagon-like peptide (GCGL) and its receptor (GCGLR) in chickens: evidence for the existence of GCGL and GCGLR genes in nonmammalian vertebrates. , Wang Y, Meng F, Zhong Y, Huang G, Li J., Endocrinology. November 1, 2012; 153 (11): 5247-60.
Characterization of glucagon-like peptide 1 receptor ( GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants. , Huang G, Li J, Fu H, Yan Z, Bu G, He X , Wang Y., Domest Anim Endocrinol. July 1, 2012; 43 (1): 1-15.
Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos. , Zhao H , Han D, Dawid IB , Pieler T , Chen Y , Chen Y ., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.
Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells. , Oropeza D, Horb M ., Genesis. March 1, 2012; 50 (3): 271-85.
Xenopus staufen2 is required for anterior endodermal organ formation. , Bilogan CK , Horb ME ., Genesis. March 1, 2012; 50 (3): 251-9.
Evolutionary expression of glucose-dependent-insulinotropic polypeptide ( GIP). , Musson MC, Jepeal LI, Finnerty JR, Wolfe MM., Regul Pept. November 10, 2011; 171 (1-3): 26-34.
Incretin hormones and the expanding families of glucagon-like sequences and their receptors. , Irwin DM, Prentice KJ., Diabetes Obes Metab. October 1, 2011; 13 Suppl 1 69-81.
Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin. , Tam JK, Lau KW, Lee LT , Chu JY, Ng KM, Fournier A, Vaudry H, Chow BK., PLoS One. April 1, 2011; 6 (4): e19384.
Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. , Pearl EJ , Jarikji Z , Horb ME ., Dev Biol. March 1, 2011; 351 (1): 135-45.
BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA. , Horb LD , Horb ME ., Dev Biol. September 15, 2010; 345 (2): 156-69.
The serendipitous origin of chordate secretin peptide family members. , Cardoso JC, Vieira FA, Gomes AS, Power DM., BMC Evol Biol. May 6, 2010; 10 135.
Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes. , Villasenor A, Wang ZV, Rivera LB, Ocal O, Asterholm IW, Scherer PE, Brekken RA, Cleaver O , Wilkie TM., Dis Model Mech. January 1, 2010; 3 (9-10): 567-80.
Xenopus insm1 is essential for gastrointestinal and pancreatic endocrine cell development. , Horb LD , Jarkji ZH, Horb ME ., Dev Dyn. October 1, 2009; 238 (10): 2505-10.
Xenopus pancreas development. , Pearl EJ , Bilogan CK , Mukhi S , Brown DD , Horb ME ., Dev Dyn. June 1, 2009; 238 (6): 1271-86.
The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds. , Jarikji Z , Horb LD , Shariff F, Mandato CA , Cho KW , Horb ME ., Development. June 1, 2009; 136 (11): 1791-800.
Cloning, tissue distribution, and functional characterization of chicken glucagon receptor. , Wang J , Wang Y, Li X, Li J, Leung FC., Poult Sci. December 1, 2008; 87 (12): 2678-88.
Gene organization, evolution and expression of the microtubule-associated protein ASAP ( MAP9). , Venoux M, Delmouly K, Milhavet O, Vidal-Eychenié S, Giorgi D, Rouquier S., BMC Genomics. September 9, 2008; 9 406.
Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas. , Jarikji ZH , Vanamala S, Beck CW , Wright CV , Leach SD, Horb ME ., Dev Biol. April 15, 2007; 304 (2): 786-99.
Target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 and Kv2.1: Implications on pancreatic islet cell Kv channels. , Wolf-Goldberg T, Michaelevski I, Sheu L, Gaisano HY, Chikvashvili D, Lotan I., Mol Pharmacol. September 1, 2006; 70 (3): 818-28.
Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. , Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ , Holst JJ, Clark PM, Ellard S, Søvik O, Polak M, Hattersley AT, Neonatal Diabetes International Collaborative Group., N Engl J Med. August 3, 2006; 355 (5): 467-77.
Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. , Afelik S, Chen Y , Pieler T ., Genes Dev. June 1, 2006; 20 (11): 1441-6.
Wnt5 signaling in vertebrate pancreas development. , Kim HJ , Schleiffarth JR, Jessurun J, Sumanas S, Petryk A, Lin S, Ekker SC ., BMC Biol. October 24, 2005; 3 23.