Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (36) GO Terms (5) Nucleotides (261) Proteins (51) Interactants (815) Wiki

Papers associated with ca2

Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 36 of 36 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          

Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis., Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM., Front Neurosci. March 15, 2019; 13 1301.  

A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells., Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM., Elife. May 29, 2018; 7                               

Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis., Fu L, Das B, Matsuura K, Fujimoto K, Heimeier RA, Shi YB, Shi YB., Sci Rep. July 25, 2017; 7 (1): 6414.            

Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances., Theparambil SM, Naoshin Z, Defren S, Schmaelzle J, Weber T, Schneider HP, Deitmer JW., J Physiol. April 15, 2017; 595 (8): 2569-2585.

Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4., Noor SI, Pouyssegur J, Deitmer JW, Becker HM., FEBS J. January 1, 2017; 284 (1): 149-162.

High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport., Theparambil SM, Deitmer JW., Glia. September 1, 2015; 63 (9): 1581-94.

Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes., Theparambil SM, Naoshin Z, Thyssen A, Deitmer JW., J Physiol. August 15, 2015; 593 (16): 3533-47.

Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction., Vilas G, Krishnan D, Loganathan SK, Malhotra D, Liu L, Beggs MR, Gena P, Calamita G, Jung M, Zimmermann R, Tamma G, Casey JR, Alexander RT., Mol Biol Cell. March 15, 2015; 26 (6): 1106-18.                    

Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II., Noor SI, Dietz S, Heidtmann H, Boone CD, McKenna R, Deitmer JW, Becker HM., J Biol Chem. February 13, 2015; 290 (7): 4476-86.

Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function., Jamali S, Klier M, Ames S, Barros LF, McKenna R, Deitmer JW, Becker HM., Sci Rep. January 12, 2015; 5 13605.              

Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes., Musa-Aziz R, Occhipinti R, Boron WF., Am J Physiol Cell Physiol. November 1, 2014; 307 (9): C791-813.

Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes., Occhipinti R, Musa-Aziz R, Boron WF., Am J Physiol Cell Physiol. November 1, 2014; 307 (9): C841-58.

Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters., Klier M, Andes FT, Deitmer JW, Becker HM., J Biol Chem. January 31, 2014; 289 (5): 2765-75.

Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                

Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II., Stridh MH, Alt MD, Wittmann S, Heidtmann H, Aggarwal M, Riederer B, Seidler U, Wennemuth G, McKenna R, Deitmer JW, Becker HM., J Physiol. May 15, 2012; 590 (10): 2333-51.

Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II., Klier M, Schüler C, Halestrap AP, Sly WS, Deitmer JW, Becker HM., J Biol Chem. August 5, 2011; 286 (31): 27781-91.

Transdifferentiation of tadpole pancreatic acinar cells to duct cells mediated by Notch and stromelysin-3., Mukhi S, Brown DD., Dev Biol. March 15, 2011; 351 (2): 311-7.        

Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II., Becker HM, Klier M, Schüler C, McKenna R, Deitmer JW., Proc Natl Acad Sci U S A. February 15, 2011; 108 (7): 3071-6.

Specification of ion transport cells in the Xenopus larval skin., Quigley IK, Stubbs JL, Kintner C., Development. February 1, 2011; 138 (4): 705-14.                                          

Functional role of a putative carbonic anhydrase II-binding domain in the electrogenic Na+ -HCO₃- cotransporter NBCe1 expressed in Xenopus oocytes., Yamada H, Horita S, Suzuki M, Fujita T, Seki G., Channels (Austin). January 1, 2011; 5 (2): 106-9.

Substrate-dependent interference of carbonic anhydrases with the glutamine transporter SNAT3-induced conductance., Weise A, Schneider HP, McKenna R, Deitmer JW., Cell Physiol Biochem. January 1, 2011; 27 (1): 79-90.

Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase., Schueler C, Becker HM, McKenna R, Deitmer JW., PLoS One. January 1, 2011; 6 (11): e27167.                

Sharpey-Schafer lecture: gas channels., Boron WF., Exp Physiol. December 1, 2010; 95 (12): 1107-30.                      

Expression characteristics of dual-promoter lentiviral vectors targeting retinal photoreceptors and Müller cells., Semple-Rowland SL, Coggin WE, Geesey M, Eccles KS, Abraham L, Pachigar K, Ludlow R, Khani SC, Smith WC., Mol Vis. May 27, 2010; 16 916-34.                  

Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II., Becker HM, Klier M, Deitmer JW., J Membr Biol. April 1, 2010; 234 (2): 125-35.

Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1., Becker HM, Deitmer JW., J Biol Chem. August 1, 2008; 283 (31): 21655-67.

Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ, Barker D, Day RC, Beck CW., BMC Dev Biol. June 23, 2008; 8 66.              

Enhanced formation of a HCO3- transport metabolon in exocrine cells of Nhe1-/- mice., Gonzalez-Begne M, Nakamoto T, Nguyen HV, Stewart AK, Alper SL, Melvin JE., J Biol Chem. November 30, 2007; 282 (48): 35125-32.

Enzymatic suppression of the membrane conductance associated with the glutamine transporter SNAT3 expressed in Xenopus oocytes by carbonic anhydrase II., Weise A, Becker HM, Deitmer JW., J Gen Physiol. August 1, 2007; 130 (2): 203-15.              

Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U, Pickney LM, Ozpolat BD, Wessely O., Dev Biol. July 1, 2007; 307 (1): 152-64.                  

Xenopus cDNA microarray identification of genes with endodermal organ expression., Park EC, Hayata T, Cho KW, Han JK., Dev Dyn. June 1, 2007; 236 (6): 1633-49.                    

Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter., Becker HM, Deitmer JW., J Biol Chem. May 4, 2007; 282 (18): 13508-21.

Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes., Lu J, Daly CM, Parker MD, Gill HS, Piermarini PM, Pelletier MF, Boron WF., J Biol Chem. July 14, 2006; 281 (28): 19241-50.

Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment., Zhou X, Vize PD., Dev Dyn. May 1, 2005; 233 (1): 142-4.    

Mechanism of acid adaptation of a fish living in a pH 3.5 lake., Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S., Am J Physiol Regul Integr Comp Physiol. May 1, 2003; 284 (5): R1199-212.

Page(s): 1