Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (65) GO Terms (0) Nucleotides (60) Proteins (37) Interactants (75) Wiki
XB-GENEPAGE-950264

Papers associated with hcn1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery., O'Connor EC, Kambara K, Bertrand D., Expert Opin Drug Discov. February 1, 2024; 19 (2): 173-187.      


Cation leak: a common functional defect causing HCN1 developmental and epileptic encephalopathy., McKenzie CE, Forster IC, Soh MS, Phillips AM, Bleakley LE, Russ-Hall SJ, Myers KA, Scheffer IE, Reid CA., Brain Commun. January 1, 2023; 5 (3): fcad156.


Direct Regulation of Hyperpolarization-Activated Cyclic-Nucleotide Gated (HCN1) Channels by Cannabinoids., Mayar S, Memarpoor-Yazdi M, Makky A, Eslami Sarokhalil R, D'Avanzo N., Front Mol Neurosci. April 6, 2022; 15 848540.                  


Biophysical analysis of an HCN1 epilepsy variant suggests a critical role for S5 helix Met-305 in voltage sensor to pore domain coupling., Hung A, Forster IC, Mckenzie CE, Berecki G, Petrou S, Kathirvel A, Soh MS, Reid CA., Prog Biophys Mol Biol. November 1, 2021; 166 156-172.


Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy., Bleakley LE, McKenzie CE, Soh MS, Forster IC, Pinares-Garcia P, Sedo A, Kathirvel A, Churilov L, Jancovski N, Maljevic S, Berkovic SF, Scheffer IE, Petrou S, Santoro B, Reid CA., Brain. August 17, 2021; 144 (7): 2060-2073.


External Cd2+ and protons activate the hyperpolarization-gated K+ channel KAT1 at the voltage sensor., Zhou Y, Assmann SM, Jegla T., J Gen Physiol. January 4, 2021; 153 (1):                           


The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms., Wang ZJ, Blanco I, Hayoz S, Brelidze TI., J Biol Chem. June 12, 2020; 295 (24): 8164-8173.


Alkylphenol inverse agonists of HCN1 gating: H-bond propensity, ring saturation and adduct geometry differentially determine efficacy and potency., Joyce RL, Beyer NP, Vasilopoulos G, Woll KA, Hall AC, Eckenhoff RG, Barman DN, Warren JD, Tibbs GR, Goldstein PA., Biochem Pharmacol. May 1, 2019; 163 493-508.


Bipolar switching by HCN voltage sensor underlies hyperpolarization activation., Cowgill J, Klenchin VA, Alvarez-Baron C, Tewari D, Blair A, Chanda B., Proc Natl Acad Sci U S A. January 8, 2019; 116 (2): 670-678.                        


The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function., Silbernagel N, Walecki M, Schäfer MK, Kessler M, Zobeiri M, Rinné S, Kiper AK, Komadowski MA, Vowinkel KS, Wemhöner K, Fortmüller L, Schewe M, Dolga AM, Scekic-Zahirovic J, Matschke LA, Culmsee C, Baukrowitz T, Monassier L, Ullrich ND, Dupuis L, Just S, Budde T, Fabritz L, Decher N., FASEB J. November 1, 2018; 32 (11): 6159-6173.            


Minimal molecular determinants of isoform-specific differences in efficacy in the HCN channel family., Alvarez-Baron CP, Klenchin VA, Chanda B., J Gen Physiol. August 6, 2018; 150 (8): 1203-1213.            


Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK., Schmidpeter PAM, Gao X, Uphadyay V, Rheinberger J, Nimigean CM., J Gen Physiol. June 4, 2018; 150 (6): 821-834.          


Gain-of-function HCN2 variants in genetic epilepsy., Li M, Maljevic S, Phillips AM, Petrovski S, Hildebrand MS, Burgess R, Mount T, Zara F, Striano P, Schubert J, Thiele H, Nürnberg P, Wong M, Weisenberg JL, Thio LL, Lerche H, Scheffer IE, Berkovic SF, Petrou S, Reid CA., Hum Mutat. February 1, 2018; 39 (2): 202-209.


Gabapentin Modulates HCN4 Channel Voltage-Dependence., Tae HS, Smith KM, Phillips AM, Boyle KA, Li M, Forster IC, Hatch RJ, Richardson R, Hughes DI, Graham BA, Petrou S, Reid CA., Front Pharmacol. May 26, 2017; 8 554.            


Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4., Abbott GW., Sci Rep. December 6, 2016; 6 38412.              


Patch-clamp fluorometry-based channel counting to determine HCN channel conductance., Liu C, Xie C, Grant K, Su Z, Gao W, Liu Q, Zhou L., J Gen Physiol. July 1, 2016; 148 (1): 65-76.          


The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contain multiple S-palmitoylation sites., Itoh M, Ishihara K, Nakashima N, Takano M., J Physiol Sci. May 1, 2016; 66 (3): 241-8.


An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities., Wemhöner K, Kanyshkova T, Silbernagel N, Fernandez-Orth J, Bittner S, Kiper AK, Rinné S, Netter MF, Meuth SG, Budde T, Decher N., Front Mol Neurosci. November 3, 2015; 8 63.          


An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors., Pan Y, Laird JG, Yamaguchi DM, Baker SA., Invest Ophthalmol Vis Sci. June 1, 2015; 56 (6): 3514-21.


A di-arginine ER retention signal regulates trafficking of HCN1 channels from the early secretory pathway to the plasma membrane., Pan Y, Laird JG, Yamaguchi DM, Baker SA., Cell Mol Life Sci. February 1, 2015; 72 (4): 833-43.            


Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation., Mesirca P, Alig J, Torrente AG, Müller JC, Marger L, Rollin A, Marquilly C, Vincent A, Dubel S, Bidaud I, Fernandez A, Seniuk A, Engeland B, Singh J, Miquerol L, Ehmke H, Eschenhagen T, Nargeot J, Wickman K, Isbrandt D, Mangoni ME., Nat Commun. August 21, 2014; 5 4664.                


Nedd4-2 regulates surface expression and may affect N-glycosylation of hyperpolarization-activated cyclic nucleotide-gated (HCN)-1 channels., Wilkars W, Wollberg J, Mohr E, Han M, Chetkovich DM, Bähring R, Bender RA., FASEB J. May 1, 2014; 28 (5): 2177-90.


Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP., Hu L, Santoro B, Saponaro A, Liu H, Moroni A, Siegelbaum S., J Gen Physiol. December 1, 2013; 142 (6): 599-612.                  


HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain., Tibbs GR, Rowley TJ, Sanford RL, Herold KF, Proekt A, Hemmings HC, Andersen OS, Goldstein PA, Flood PD., J Pharmacol Exp Ther. June 1, 2013; 345 (3): 363-73.


Protein kinase C activation inhibits rat and human hyperpolarization activated cyclic nucleotide gated channel (HCN)1--mediated current in mammalian cells., Reetz O, Strauss U., Cell Physiol Biochem. January 1, 2013; 31 (4-5): 532-41.


Asymmetric divergence in structure and function of HCN channel duplicates in Ciona intestinalis., Jackson HA, Hegle A, Nazzari H, Jegla T, Accili EA., PLoS One. January 1, 2012; 7 (11): e47590.                


Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels., Lolicato M, Nardini M, Gazzarrini S, Möller S, Bertinetti D, Herberg FW, Bolognesi M, Martin H, Fasolini M, Bertrand JA, Arrigoni C, Thiel G, Moroni A., J Biol Chem. December 30, 2011; 286 (52): 44811-20.


A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties., Peigneur S, Billen B, Derua R, Waelkens E, Debaveye S, Béress L, Tytgat J., Biochem Pharmacol. July 1, 2011; 82 (1): 81-90.


Local anesthetic inhibits hyperpolarization-activated cationic currents., Meng QT, Xia ZY, Liu J, Bayliss DA, Chen X., Mol Pharmacol. May 1, 2011; 79 (5): 866-73.


Voltage-dependent opening of HCN channels: Facilitation or inhibition by the phytoestrogen, genistein, is determined by the activation status of the cyclic nucleotide gating ring., Rozario AO, Turbendian HK, Fogle KJ, Olivier NB, Tibbs GR., Biochim Biophys Acta. September 1, 2009; 1788 (9): 1939-49.


Tanshinone IIA selectively enhances hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel instantaneous current., Liang Q, Yang L, Wang Z, Huang S, Li S, Yang G., J Pharmacol Sci. July 1, 2009; 110 (3): 381-8.


State-dependent accessibility of the P-S6 linker of pacemaker (HCN) channels supports a dynamic pore-to-gate coupling model., Siu CW, Azene EM, Au KW, Lau CP, Tse HF, Li RA., J Membr Biol. July 1, 2009; 230 (1): 35-47.                    


Probing S4 and S5 segment proximity in mammalian hyperpolarization-activated HCN channels by disulfide bridging and Cd2+ coordination., Bell DC, Turbendian HK, Valley MT, Zhou L, Riley JH, Siegelbaum SA, Tibbs GR., Pflugers Arch. June 1, 2009; 458 (2): 259-72.


Associated changes in HCN2 and HCN4 transcripts and I(f) pacemaker current in myocytes., Zhang Q, Huang A, Lin YC, Yu HG., Biochim Biophys Acta. May 1, 2009; 1788 (5): 1138-47.


Intracellular Mg2+ is a voltage-dependent pore blocker of HCN channels., Vemana S, Pandey S, Larsson HP., Am J Physiol Cell Physiol. August 1, 2008; 295 (2): C557-65.


Structural and functional determinants in the S5-P region of HCN-encoded pacemaker channels revealed by cysteine-scanning substitutions., Au KW, Siu CW, Lau CP, Tse HF, Li RA., Am J Physiol Cell Physiol. January 1, 2008; 294 (1): C136-44.


Mutation analysis of the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN2 in idiopathic generalized epilepsy., Tang B, Sander T, Craven KB, Hempelmann A, Escayg A., Neurobiol Dis. January 1, 2008; 29 (1): 59-70.


Modulation of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors coupled to phospholipase C., Pian P, Bucchi A, Decostanzo A, Robinson RB, Siegelbaum SA., Pflugers Arch. October 1, 2007; 455 (1): 125-45.


Molecular mapping of the binding site for a blocker of hyperpolarization-activated, cyclic nucleotide-modulated pacemaker channels., Cheng L, Kinard K, Rajamani R, Sanguinetti MC., J Pharmacol Exp Ther. September 1, 2007; 322 (3): 931-9.


Propofol inhibits HCN1 pacemaker channels by selective association with the closed states of the membrane embedded channel core., Lyashchenko AK, Redd KJ, Yang J, Tibbs GR., J Physiol. August 15, 2007; 583 (Pt 1): 37-56.


Kinetic relationship between the voltage sensor and the activation gate in spHCN channels., Bruening-Wright A, Elinder F, Larsson HP., J Gen Physiol. July 1, 2007; 130 (1): 71-81.                


Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity., Ouyang Q, Goeritz M, Harris-Warrick RM., J Neurophysiol. June 1, 2007; 97 (6): 3880-92.


Tryptophan-scanning mutagenesis in the S1 domain of mammalian HCN channel reveals residues critical for voltage-gated activation., Ishii TM, Nakashima N, Ohmori H., J Physiol. March 1, 2007; 579 (Pt 2): 291-301.


Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels., Chen S, Wang J, Zhou L, George MS, Siegelbaum SA., J Gen Physiol. February 1, 2007; 129 (2): 175-88.                


Effects of perfluorooctane sulfonate on action potentials and currents in cultured rat cerebellar Purkinje cells., Harada KH, Ishii TM, Takatsuka K, Koizumi A, Ohmori H., Biochem Biophys Res Commun. December 8, 2006; 351 (1): 240-5.


Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels., Elinder F, Männikkö R, Pandey S, Larsson HP., J Physiol. September 1, 2006; 575 (Pt 2): 417-31.


Suppression of ih contributes to propofol-induced inhibition of mouse cortical pyramidal neurons., Chen X, Shu S, Bayliss DA., J Neurophysiol. December 1, 2005; 94 (6): 3872-83.


Impairment of hyperpolarization-activated, cyclic nucleotide-gated channel function by the intravenous general anesthetic propofol., Cacheaux LP, Topf N, Tibbs GR, Schaefer UR, Levi R, Harrison NL, Abbott GW, Goldstein PA., J Pharmacol Exp Ther. November 1, 2005; 315 (2): 517-25.


Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers., Azene EM, Xue T, Marbán E, Tomaselli GF, Li RA., Cardiovasc Res. August 1, 2005; 67 (2): 263-73.


Hysteresis in the voltage dependence of HCN channels: conversion between two modes affects pacemaker properties., Männikkö R, Pandey S, Larsson HP, Elinder F., J Gen Physiol. March 1, 2005; 125 (3): 305-26.                                          

???pagination.result.page??? 1 2 ???pagination.result.next???