Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (63) GO Terms (3) Nucleotides (103) Proteins (41) Interactants (134) Wiki
XB-GENEPAGE-999159

Papers associated with slc3a1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Mediation of highly concentrative uptake of pregabalin by L-type amino acid transport in Chinese hamster ovary and Caco-2 cells., Su TZ, Feng MR, Weber ML., J Pharmacol Exp Ther. June 1, 2005; 313 (3): 1406-15.


Heterodimeric amino acid transporter glycoprotein domains determining functional subunit association., Franca R, Veljkovic E, Walter S, Wagner CA, Verrey F., Biochem J. June 1, 2005; 388 (Pt 2): 435-43.


Cystine and glutamate transport in renal epithelial cells transfected with human system x(-) (c)., Bridges CC, Zalups RK., Kidney Int. August 1, 2005; 68 (2): 653-64.


The structural and functional units of heteromeric amino acid transporters. The heavy subunit rBAT dictates oligomerization of the heteromeric amino acid transporters., Fernández E, Jiménez-Vidal M, Calvo M, Zorzano A, Tebar F, Palacín M, Chillarón J., J Biol Chem. September 8, 2006; 281 (36): 26552-61.


Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin., Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH., Am J Physiol Renal Physiol. February 1, 2007; 292 (2): F533-44.


Amino acid transport in schistosomes: Characterization of the permeaseheavy chain SPRM1hc., Krautz-Peterson G, Camargo S, Huggel K, Verrey F, Shoemaker CB, Skelly PJ., J Biol Chem. July 27, 2007; 282 (30): 21767-75.          


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brändli AW., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Characteristics of transport of selenoamino acids by epithelial amino acid transporters., Nickel A, Kottra G, Schmidt G, Danier J, Hofmann T, Daniel H., Chem Biol Interact. February 12, 2009; 177 (3): 234-41.


Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney., Sauert K, Kahnert S, Roose M, Gull M, Brändli AW, Ryffel GU, Waldner C., PLoS One. January 1, 2012; 7 (3): e33522.                  


The molecular mechanism of intestinal levodopa absorption and its possible implications for the treatment of Parkinson's disease., Camargo SM, Vuille-dit-Bille RN, Mariotta L, Ramadan T, Huggel K, Singer D, Götze O, Verrey F., J Pharmacol Exp Ther. October 1, 2014; 351 (1): 114-23.


Specific transport of 3-fluoro-l-α-methyl-tyrosine by LAT1 explains its specificity to malignant tumors in imaging., Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, Kaira K, Oriuchi N, Nagamori S, Kanai Y., Cancer Sci. March 1, 2016; 107 (3): 347-52.        


Modeling congenital kidney diseases in Xenopus laevis., Blackburn ATM, Miller RK., Dis Model Mech. April 9, 2019; 12 (4):       


HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes., Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS., J Am Soc Nephrol. March 1, 2023; 34 (3): 412-432.                          

???pagination.result.page??? ???pagination.result.prev??? 1 2