Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (33) GO Terms (11) Nucleotides (346) Proteins (50) Interactants (235) Wiki

Papers associated with smarca5

Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 32 of 32 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:

Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails., Peng Y, Li S, Onufriev A, Landsman D, Panchenko AR., Nat Commun. September 6, 2021; 12 (1): 5280.            

Three-dimensional folding dynamics of the Xenopus tropicalis genome., Niu L, Shen W, Shi Z, Tan Y, He N, Wan J, Sun J, Zhang Y, Huang Y, Wang W, Fang C, Li J, Zheng P, Cheung E, Chen Y, Chen Y, Li L, Hou C., Nat Genet. July 1, 2021; 53 (7): 1075-1087.                                    

Generation of Remosomes by the SWI/SNF Chromatin Remodeler Family., Shukla MS, Syed SH, Boopathi R, Simon EB, Nahata S, Ramos L, Dalkara D, Moskalenko C, Travers A, Angelov D, Dimitrov S, Hamiche A, Bednar J., Sci Rep. October 2, 2019; 9 (1): 14212.

Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling., Sabantsev A, Levendosky RF, Zhuang X, Bowman GD, Deindl S., Nat Commun. April 12, 2019; 10 (1): 1720.        

Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome., Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T., Elife. August 6, 2018; 7                                     

A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA., Winger J, Nodelman IM, Levendosky RF, Bowman GD., Elife. May 29, 2018; 7                                   

HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome., Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H., Proc Natl Acad Sci U S A. January 30, 2018; 115 (5): E876-E885.                                

Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                

Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler., Sinha KK, Gross JD, Narlikar GJ., Science. January 20, 2017; 355 (6322):

The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome., Nodelman IM, Horvath KC, Levendosky RF, Winger J, Ren R, Patel A, Li M, Wang MD, Roberts E, Bowman GD., Nucleic Acids Res. September 19, 2016; 44 (16): 7580-91.              

Purification of nuclear localization signal-containing proteins and its application to investigation of the mechanisms of the cell division cycle., Christodoulou A, Yokoyama H., Small GTPases. January 1, 2015; 6 (1): 20-7.      

Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides., Al-Ani G, Briggs K, Malik SS, Conner M, Azuma Y, Fischer CJ., Biochemistry. July 15, 2014; 53 (27): 4334-45.          

ISWI remodels nucleosomes through a random walk., Al-Ani G, Malik SS, Eastlund A, Briggs K, Fischer CJ., Biochemistry. July 15, 2014; 53 (27): 4346-57.            

Nucleosome sliding by Chd1 does not require rigid coupling between DNA-binding and ATPase domains., Nodelman IM, Bowman GD., EMBO Rep. December 1, 2013; 14 (12): 1098-103.

Remodeling of ribosomal genes in somatic cells by Xenopus egg extract., Østrup O, Hyttel P, Klærke DA, Collas P., Biochem Biophys Res Commun. September 2, 2011; 412 (3): 487-93.

Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos., Bogdanović O, Veenstra GJ., BMC Res Notes. May 6, 2011; 4 300.      

ISWI is a RanGTP-dependent MAP required for chromosome segregation., Yokoyama H, Rybina S, Santarella-Mellwig R, Mattaj IW, Karsenti E., J Cell Biol. December 14, 2009; 187 (6): 813-29.                    

Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI., Horton JR, Elgar SJ, Khan SI, Zhang X, Wade PA, Cheng X., Proteins. June 1, 2007; 67 (4): 1198-202.

A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling., Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD., Nature. July 6, 2006; 442 (7098): 86-90.

Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes., Stockdale C, Flaus A, Ferreira H, Owen-Hughes T., J Biol Chem. June 16, 2006; 281 (24): 16279-88.

Nuclear remodeling assay in Xenopus egg extract., Gonda K, Kikyo N., Methods Mol Biol. January 1, 2006; 348 247-58.

Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis., Dirscherl SS, Henry JJ, Krebs JE., Mech Dev. November 1, 2005; 122 (11): 1157-70.          

The SNF2 domain protein family in higher vertebrates displays dynamic expression patterns in Xenopus laevis embryos., Linder B, Cabot RA, Schwickert T, Rupp RA., Gene. February 4, 2004; 326 59-66.                                              

Methods for preparation and assays for Xenopus ISWI complexes., Palmer MB, Elgar S, Wade PA., Methods Enzymol. January 1, 2004; 377 364-75.

Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis., He S, Bauman D, Davis JS, Loyola A, Nishioka K, Gronlund JL, Reinberg D, Meng F, Kelleher N, McCafferty DG., Proc Natl Acad Sci U S A. October 14, 2003; 100 (21): 12033-8.

WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci., Bozhenok L, Wade PA, Varga-Weisz P., EMBO J. May 1, 2002; 21 (9): 2231-41.

Expression of ISWI and its binding to chromatin during the cell cycle and early development., Demeret C, Bocquet S, Lemaítre JM, Françon P, Méchali M., J Struct Biol. January 1, 2002; 140 (1-3): 57-66.

ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B., MacCallum DE, Losada A, Kobayashi R, Hirano T., Mol Biol Cell. January 1, 2002; 13 (1): 25-39.

Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI., Clapier CR, Längst G, Corona DF, Becker PB, Nightingale KP., Mol Cell Biol. February 1, 2001; 21 (3): 875-83.

Generation of superhelical torsion by ATP-dependent chromatin remodeling activities., Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM, Owen-Hughes T., Cell. December 22, 2000; 103 (7): 1133-42.

Multiple ISWI ATPase complexes from xenopus laevis. Functional conservation of an ACF/CHRAC homolog., Guschin D, Geiman TM, Kikyo N, Tremethick DJ, Wolffe AP, Wade PA., J Biol Chem. November 10, 2000; 275 (45): 35248-55.

Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI., Kikyo N, Wade PA, Guschin D, Ge H, Wolffe AP., Science. September 29, 2000; 289 (5488): 2360-2.

Page(s): 1