Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (75) GO Terms (0) Nucleotides (41) Proteins (24) Interactants (145) Wiki
XB-GENEPAGE-855698

Papers associated with slc5a1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Substrate specificity of a chimera made from Xenopus SGLT1-like protein and rabbit SGLT1., Nagata K, Hata Y., Biochim Biophys Acta. June 1, 2006; 1758 (6): 747-54.


RS1 (RSC1A1) regulates the exocytotic pathway of Na+-D-glucose cotransporter SGLT1., Veyhl GJ., Am J Physiol Renal Physiol. December 1, 2006; 291 (6): F1213-23.


Effect of substrate on the pre-steady-state kinetics of the Na(+)/glucose cotransporter., Gagnon DG, Frindel C, Lapointe JY., Biophys J. January 15, 2007; 92 (2): 461-72.


Voltage-clamp fluorometry in the local environment of the C255-C511 disulfide bridge of the Na+/glucose cotransporter., Gagnon DG, Frindel C, Lapointe JY., Biophys J. April 1, 2007; 92 (7): 2403-11.


Na+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution., Althoff T, Hentschel H, Luig J, Schütz H, Kasch M, Kinne RK., Am J Physiol Regul Integr Comp Physiol. June 1, 2007; 292 (6): R2391-9.


The mechanism of water transport in Na+-coupled glucose transporters expressed in Xenopus oocytes., Zeuthen T, Zeuthen E., Biophys J. August 15, 2007; 93 (4): 1413-6; discussion 1417-9.


Tripeptides of RS1 (RSC1A1) inhibit a monosaccharide-dependent exocytotic pathway of Na+-D-glucose cotransporter SGLT1 with high affinity., Vernaleken A, Veyhl M, Gorboulev V, Kottra G, Palm D, Burckhardt BC, Burckhardt G, Pipkorn R, Beier N, van Amsterdam C, Koepsell H., J Biol Chem. September 28, 2007; 282 (39): 28501-13.


Sodium-dependent reorganization of the sugar-binding site of SGLT1., Hirayama BA, Loo DD, Díez-Sampedro A, Leung DW, Meinild AK, Lai-Bing M, Turk E, Wright EM., Biochemistry. November 20, 2007; 46 (46): 13391-406.


Improved intestinal membrane permeability of hexose-quinoline derivatives via the hexose transporter, SGLT1., Otake K, Suzuki H, Higashi R, Yabuuchi H, Haga M, Maeda T, Cook TJ, Tamai I., J Pharm Sci. May 1, 2008; 97 (5): 1821-30.


How drugs interact with transporters: SGLT1 as a model., Loo DD, Hirayama BA, Sala-Rabanal M, Wright EM., J Membr Biol. May 1, 2008; 223 (2): 87-106.


Transmembrane IV of the high-affinity sodium-glucose cotransporter participates in sugar binding., Liu T, Lo B, Speight P, Silverman M., Am J Physiol Cell Physiol. July 1, 2008; 295 (1): C64-72.


Effects on conformational states of the rabbit sodium/glucose cotransporter through modulation of polarity and charge at glutamine 457., Liu T, Krofchick D, Silverman M., Biophys J. January 1, 2009; 96 (2): 748-60.


Reanalysis of structure/function correlations in the region of transmembrane segments 4 and 5 of the rabbit sodium/glucose cotransporter., Liu T, Speight P, Silverman M., Biochem Biophys Res Commun. January 2, 2009; 378 (1): 133-8.


Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(gamma-glutamic acid)., Sakuma S, Sagawa T, Masaoka Y, Kataoka M, Yamashita S, Shirasaka Y, Tamai I, Ikumi Y, Kida T, Akashi M., J Control Release. January 19, 2009; 133 (2): 125-31.


Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG., Musa-Aziz R, Chen LM, Pelletier MF, Boron WF., Proc Natl Acad Sci U S A. March 31, 2009; 106 (13): 5406-11.


The actual ionic nature of the leak current through the Na+/glucose cotransporter SGLT1., Longpré JP, Gagnon DG, Coady MJ, Lapointe JY., Biophys J. January 20, 2010; 98 (2): 231-9.


Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase., Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Föller M, Lang F., Mol Membr Biol. April 1, 2010; 27 (2-3): 137-44.


Functional characterization of mouse sodium/glucose transporter type 3b., Aljure O, Díez-Sampedro A., Am J Physiol Cell Physiol. July 1, 2010; 299 (1): C58-65.


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W, Tata A, Kühl M, Kühl SJ., Development. May 1, 2014; 141 (10): 2064-74.          


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN, Sondalle SB, Del Viso F, Baserga SJ, Khokha MK., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


Alternative channels for urea in the inner medulla of the rat kidney., Nawata CM, Dantzler WH, Pannabecker TL., Am J Physiol Renal Physiol. December 1, 2015; 309 (11): F916-24.


MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2., Coady MJ, El Tarazi A, Santer R, Bissonnette P, Sasseville LJ, Calado J, Lussier Y, Dumayne C, Bichet DG, Lapointe JY., J Am Soc Nephrol. January 1, 2017; 28 (1): 85-93.


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA., Commun Biol. October 7, 2021; 4 (1): 1158.                                


HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes., Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS., J Am Soc Nephrol. March 1, 2023; 34 (3): 412-432.                          


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC., Sci Rep. October 4, 2023; 13 (1): 16671.                                          

???pagination.result.page??? ???pagination.result.prev??? 1 2