Results 1 - 40 of 40 results
Production and characterization of monoclonal antibodies to xenopus proteins. , Horr B, Kurtz R, Pandey A, Hoffstrom BG, Schock E , LaBonne C , Alfandari D , Alfandari D ., Development. February 14, 2023;
Influence of Sox protein SUMOylation on neural development and regeneration. , Chang KC., Neural Regen Res. March 1, 2022; 17 (3): 477-481.
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C, Saint-Jeannet JP ., Genesis. October 1, 2021; 59 (10): e23447.
Fibroblast dedifferentiation as a determinant of successful regeneration. , Lin TY, Gerber T, Taniguchi-Sugiura Y, Murawala P, Hermann S, Grosser L, Shibata E, Treutlein B, Tanaka EM ., Dev Cell. May 17, 2021; 56 (10): 1541-1551.e6.
A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells. , Buitrago-Delgado E, Schock EN , Nordin K, LaBonne C ., Dev Biol. December 15, 2018; 444 (2): 50-61.
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. , Kim Y, Jeong Y, Kwon K, Ismail T, Lee HK , Kim C, Park JW, Kwon OS, Kang BS, Lee DS, Park TJ, Kwon T , Lee HS ., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.
AKT signaling displays multifaceted functions in neural crest development. , Sittewelle M, Monsoro-Burq AH ., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.
The neural border: Induction, specification and maturation of the territory that generates neural crest cells. , Pla P, Monsoro-Burq AH ., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.
Xenopus SOX5 enhances myogenic transcription indirectly through transrepression. , Della Gaspera B , Chesneau A, Weill L, Charbonnier F, Chanoine C ., Dev Biol. October 15, 2018; 442 (2): 262-275.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS , Saint-Jeannet JP ., Dev Biol. October 1, 2018; 442 (1): 162-172.
Dkk2 promotes neural crest specification by activating Wnt/ β-catenin signaling in a GSK3β independent manner. , Devotta A, Hong CS , Saint-Jeannet JP ., Elife. July 23, 2018; 7
Regulation of neural crest development by the formin family protein Daam1. , Ossipova O, Kerney R, Saint-Jeannet JP , Sokol SY ., Genesis. June 1, 2018; 56 (6-7): e23108.
Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus. , Bae CJ, Hong CS , Saint-Jeannet JP ., Biochem Biophys Res Commun. January 15, 2018; 495 (3): 2257-2263.
A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. , Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM , Monsoro-Burq AH ., PLoS Biol. October 19, 2017; 15 (10): e2004045.
Leptin Induces Mitosis and Activates the Canonical Wnt/ β-Catenin Signaling Pathway in Neurogenic Regions of Xenopus Tadpole Brain. , Bender MC, Sifuentes CJ, Denver RJ ., Front Endocrinol (Lausanne). May 8, 2017; 8 99.
The Sox transcriptional factors: Functions during intestinal development in vertebrates. , Fu L, Shi YB ., Semin Cell Dev Biol. March 1, 2017; 63 58-67.
The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification. , Hatch VL , Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S , van Kruijsbergen I, Veenstra GJ , Münsterberg AE, Wheeler GN ., Dev Biol. August 15, 2016; 416 (2): 361-72.
Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. , Schille C, Heller J, Schambony A ., BMC Dev Biol. January 19, 2016; 16 1.
Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. , Wong TC, Rebbert M, Wang C , Wang C , Wang C , Chen X, Heffer A, Zarelli VE, Dawid IB , Zhao H ., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.
Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus. , Néant I, Mellström B, Gonzalez P, Naranjo JR, Moreau M , Leclerc C ., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.
The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus. , Matsukawa S , Miwata K, Asashima M , Michiue T ., Dev Biol. March 1, 2015; 399 (1): 164-176.
Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching. , Hong CS , Saint-Jeannet JP ., Genesis. December 1, 2014; 52 (12): 946-51.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K, LaBonne C ., Dev Cell. November 10, 2014; 31 (3): 374-382.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS , Devotta A, Lee YH , Park BY, Saint-Jeannet JP ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
Identification of Pax3 and Zic1 targets in the developing neural crest. , Bae CJ, Park BY, Lee YH , Lee YH , Tobias JW, Hong CS , Saint-Jeannet JP ., Dev Biol. February 15, 2014; 386 (2): 473-83.
Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. , Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH ., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD, Salvador S, LaBonne C ., Dev Biol. January 15, 2012; 361 (2): 313-25.
Neural crest specification by noncanonical Wnt signaling and PAR-1. , Ossipova O, Sokol SY ., Development. December 1, 2011; 138 (24): 5441-50.
Cardiac neural crest is dispensable for outflow tract septation in Xenopus. , Lee YH , Saint-Jeannet JP ., Development. May 1, 2011; 138 (10): 2025-34.
A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages. , Schmidt J, Schuff M, Olsson L ., J Anat. February 1, 2011; 218 (2): 226-42.
Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. , de Crozé N, Maczkowiak F, Monsoro-Burq AH ., Proc Natl Acad Sci U S A. January 4, 2011; 108 (1): 155-60.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC, Faas L, Pownall ME ., Dev Biol. May 15, 2010; 341 (2): 375-88.
SoxE factors as multifunctional neural crest regulatory factors. , Haldin CE , LaBonne C ., Int J Biochem Cell Biol. March 1, 2010; 42 (3): 441-4.
Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. , Klymkowsky MW , Rossi CC, Artinger KB., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.
Characterization of molecular markers to assess cardiac cushions formation in Xenopus. , Lee YH , Lee YH , Saint-Jeannet JP ., Dev Dyn. December 1, 2009; 238 (12): 3257-65.
Xenopus ADAM19 is involved in neural, neural crest and muscle development. , Neuner R, Cousin H , McCusker C, Coyne M, Alfandari D , Alfandari D ., Mech Dev. January 1, 2009; 126 (3-4): 240-55.
Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. , Hong CS , Park BY, Saint-Jeannet JP ., Development. December 1, 2008; 135 (23): 3903-10.
The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. , Hong CS , Saint-Jeannet JP ., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.
Functional analysis of Sox8 during neural crest development in Xenopus. , O'Donnell M, Hong CS , Huang X , Delnicki RJ, Saint-Jeannet JP ., Development. October 1, 2006; 133 (19): 3817-26.
Induction of the neural crest and the opportunities of life on the edge. , Huang X , Saint-Jeannet JP ., Dev Biol. November 1, 2004; 275 (1): 1-11.