Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (152) GO Terms (9) Nucleotides (232) Proteins (85) Interactants (271) Wiki
XB-GENEPAGE-944820

Papers associated with cdc25c



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cloning, sequencing, and expression of the genomic DNA encoding the protein phosphatase cdc25 in Dictyostelium discoideum., Mayanagi T, Maeda Y, Hirose S, Arakane T, Araki T, Amagai A., Dev Genes Evol. October 1, 2004; 214 (10): 510-4.


Timing of Plk1 and MPF activation during porcine oocyte maturation., Anger M, Klima J, Kubelka M, Prochazka R, Motlik J, Schultz RM., Mol Reprod Dev. September 1, 2004; 69 (1): 11-6.


Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism., Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N., EMBO J. August 18, 2004; 23 (16): 3386-96.


The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio., Conn CW, Lewellyn AL, Maller JL., Dev Cell. August 1, 2004; 7 (2): 275-81.


Regulation of Cdc25C activity during the meiotic G2/M transition., Perdiguero E, Nebreda AR., Cell Cycle. June 1, 2004; 3 (6): 733-7.


The polo box is required for multiple functions of Plx1 in mitosis., Liu J, Lewellyn AL, Chen LG, Maller JL., J Biol Chem. May 14, 2004; 279 (20): 21367-73.


Inactivating Cdc25, mitotic style., Wolfe BA, Gould KL., Cell Cycle. May 1, 2004; 3 (5): 601-3.


Cyclin A/Cdk2 complexes regulate activation of Cdk1 and Cdc25 phosphatases in human cells., Mitra J, Enders GH., Oncogene. April 22, 2004; 23 (19): 3361-7.


Inhibition of the cell cycle is required for convergent extension of the paraxial mesoderm during Xenopus neurulation., Leise WF, Mueller PR., Development. April 1, 2004; 131 (8): 1703-15.   


When the checkpoints have gone: insights into Cdc25 functional activation., Margolis SS, Kornbluth S., Cell Cycle. April 1, 2004; 3 (4): 425-8.


Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes., Karaiskou A, Leprêtre AC, Pahlavan G, Du Pasquier D, Ozon R, Jessus C., Development. April 1, 2004; 131 (7): 1543-52.   


Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos., Petrus MJ, Wilhelm DE, Murakami M, Kappas NC, Carter AD, Wroble BN, Sible JC., Cell Cycle. February 1, 2004; 3 (2): 212-7.


Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation., Murakami MS, Moody SA, Daar IO, Morrison DK., Development. February 1, 2004; 131 (3): 571-80.   


A Xenopus cell-free system for analysis of the Chfr ubiquitin ligase involved in control of mitotic entry., Kang D, Wong J, Fang G., Methods Mol Biol. January 1, 2004; 280 229-43.


Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase., Hutchins JR, Clarke PR., Cell Cycle. January 1, 2004; 3 (1): 41-5.


Xp38gamma/SAPK3 promotes meiotic G(2)/M transition in Xenopus oocytes and activates Cdc25C., Perdiguero E, Pillaire MJ, Bodart JF, Hennersdorf F, Frödin M, Duesbery NS, Alonso G, Nebreda AR., EMBO J. November 3, 2003; 22 (21): 5746-56.


PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation., Margolis SS, Walsh S, Weiser DC, Yoshida M, Shenolikar S, Kornbluth S., EMBO J. November 3, 2003; 22 (21): 5734-45.


Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II., Hutchins JR, Dikovskaya D, Clarke PR., Mol Biol Cell. October 1, 2003; 14 (10): 4003-14.


Polo-like kinases in cell cycle checkpoint control., Dai W, Huang X, Ruan Q., Front Biosci. September 1, 2003; 8 d1128-33.


Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate., Müller J, Ritt DA, Copeland TD, Morrison DK., EMBO J. September 1, 2003; 22 (17): 4431-42.


Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate., Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E., J Biol Chem. July 11, 2003; 278 (28): 25277-80.


Dual phosphorylation controls Cdc25 phosphatases and mitotic entry., Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, Zhao H, Moody SA, Appella E, Piwnica-Worms H, Fornace AJ., Nat Cell Biol. June 1, 2003; 5 (6): 545-51.


The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex., Goda T, Ishii T, Nakajo N, Sagata N, Kobayashi H., J Biol Chem. May 23, 2003; 278 (21): 19032-7.


Expression of cell-cycle regulators during Xenopus oogenesis., Furuno N, Kawasaki A, Sagata N., Gene Expr Patterns. May 1, 2003; 3 (2): 165-8.   


Pre-M phase-promoting factor associates with annulate lamellae in Xenopus oocytes and egg extracts., Beckhelling C, Chang P, Chevalier S, Ford C, Houliston E., Mol Biol Cell. March 1, 2003; 14 (3): 1125-37.


Phosphorylation of Xenopus Cdc25C at Ser285 interferes with ability to activate a DNA damage replication checkpoint in pre-midblastula embryos., Bulavin DV, Demidenko ZN, Phillips C, Moody SA, Fornace AJ., Cell Cycle. January 1, 2003; 2 (3): 263-6.


G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A., Duckworth BC, Weaver JS, Ruderman JV., Proc Natl Acad Sci U S A. December 24, 2002; 99 (26): 16794-9.


Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation., Davezac N, Baldin V, Blot J, Ducommun B, Tassan JP., Oncogene. October 31, 2002; 21 (50): 7630-41.


Geminin deficiency causes a Chk1-dependent G2 arrest in Xenopus., McGarry TJ., Mol Biol Cell. October 1, 2002; 13 (10): 3662-71.   


Dephosphorylation of the inhibitory phosphorylation site S287 in Xenopus Cdc25C by protein phosphatase-2A is inhibited by 14-3-3 binding., Hutchins JR, Dikovskaya D, Clarke PR., FEBS Lett. September 25, 2002; 528 (1-3): 267-71.


Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB., Grallert A, Hagan IM., EMBO J. June 17, 2002; 21 (12): 3096-107.


Initial activation of cyclin-B1-cdc2 kinase requires phosphorylation of cyclin B1., Peter M, Le Peuch C, Labbé JC, Meyer AN, Donoghue DJ, Dorée M., EMBO Rep. June 1, 2002; 3 (6): 551-6.


Inhibition of Xenopus oocyte meiotic maturation by catalytically inactive protein kinase A., Schmitt A, Nebreda AR., Proc Natl Acad Sci U S A. April 2, 2002; 99 (7): 4361-6.


Timing of events in mitosis., Georgi AB, Stukenberg PT, Kirschner MW., Curr Biol. January 22, 2002; 12 (2): 105-14.   


The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition., Kang D, Chen J, Wong J, Fang G., J Cell Biol. January 21, 2002; 156 (2): 249-59.   


Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G(2)/M-phase transition in Xenopus oocytes., Gotoh T, Ohsumi K, Matsui T, Takisawa H, Kishimoto T., J Cell Sci. September 1, 2001; 114 (Pt 18): 3397-406.


The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes., Qian YW, Erikson E, Taieb FE, Maller JL., Mol Biol Cell. June 1, 2001; 12 (6): 1791-9.


The N-terminal helix of Xenopus cyclins A and B contributes to binding specificity of the cyclin-CDK complex., Goda T, Funakoshi M, Suhara H, Nishimoto T, Kobayashi H., J Biol Chem. May 4, 2001; 276 (18): 15415-22.


Pin1 acts catalytically to promote a conformational change in Cdc25., Stukenberg PT, Kirschner MW., Mol Cell. May 1, 2001; 7 (5): 1071-83.


Interplay between Cdc2 kinase and the c-Mos/MAPK pathway between metaphase I and metaphase II in Xenopus oocytes., Frank-Vaillant M, Haccard O, Ozon R, Jessus C., Dev Biol. March 1, 2001; 231 (1): 279-88.


Specificity of natural and artificial substrates for human Cdc25A., Rudolph J, Epstein DM, Parker L, Eckstein J., Anal Biochem. February 1, 2001; 289 (1): 43-51.


PKN delays mitotic timing by inhibition of Cdc25C: possible involvement of PKN in the regulation of cell division., Misaki K, Mukai H, Yoshinaga C, Oishi K, Isagawa T, Takahashi M, Ohsumi K, Kishimoto T, Ono Y., Proc Natl Acad Sci U S A. January 2, 2001; 98 (1): 125-9.


Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes., Oe T, Nakajo N, Katsuragi Y, Okazaki K, Sagata N., Dev Biol. January 1, 2001; 229 (1): 250-61.


Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function., Cogswell JP, Brown CE, Bisi JE, Neill SD., Cell Growth Differ. December 1, 2000; 11 (12): 615-23.


Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C., Takizawa CG, Morgan DO., Curr Opin Cell Biol. December 1, 2000; 12 (6): 658-65.


Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts., Pérez-Mongiovi D, Beckhelling C, Chang P, Ford CC, Houliston E., J Cell Biol. September 4, 2000; 150 (5): 963-74.   


The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase., Roshak AK, Capper EA, Imburgia C, Fornwald J, Scott G, Marshall LA., Cell Signal. June 1, 2000; 12 (6): 405-11.


Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the G2/M transition in somatic cells., Ellinger-Ziegelbauer H, Karasuyama H, Yamada E, Tsujikawa K, Todokoro K, Nishida E., Genes Cells. June 1, 2000; 5 (6): 491-8.


Identification of a C-terminal cdc25 sequence required for promotion of germinal vesicle breakdown., Powers EA, Thompson DP, Garner-Hamrick PA, He W, Yem AW, Bannow CA, Staples DJ, Waszak GA, Smith CW, Deibel MR, Fisher C., Biochem J. May 1, 2000; 347 Pt 3 653-60.


The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk)., Gross SD, Schwab MS, Taieb FE, Lewellyn AL, Qian YW, Maller JL., Curr Biol. April 20, 2000; 10 (8): 430-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???