Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (261) GO Terms (7) Nucleotides (120) Proteins (54) Interactants (309) Wiki
XB-GENEPAGE-483702

Papers associated with pomc



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Trends in the evolution of the elasmobranch melanocortin-2 receptor: Insights from structure/function studies on the activation of whale shark Mc2r., Hoglin BE, Miner MV, Erbenebayar U, Shaughnessy CA, Dores RM., Gen Comp Endocrinol. July 1, 2023; 338 114278.                  


cyp21a2 Knockout Tadpoles Survive Metamorphosis Despite Low Corticosterone., Paul B, Shewade LH, Buchholz DR., Endocrinology. November 14, 2022; 164 (1):               


Human Melanocortin-2 Receptor: Identifying a Role for Residues in the TM4, EC2, and TM5 Domains in Activation and Trafficking as a Result of Co-Expression with the Accessory Protein, Mrap1 in Chinese Hamster Ovary Cells., Davis PV, Shaughnessy CA, Dores RM., Biomolecules. October 4, 2022; 12 (10):


Impaired negative feedback and death following acute stress in glucocorticoid receptor knockout Xenopus tropicalis tadpoles., Paul B, Sterner ZR, Bhawal R, Anderson ET, Zhang S, Buchholz DR., Gen Comp Endocrinol. September 15, 2022; 326 114072.      


Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in Xenopus tropicalis., Tai X, Zhang Y, Yao J, Li X, Liu J, Han J, Lyu J, Lin G, Zhang C., Front Endocrinol (Lausanne). January 1, 2022; 13 892407.              


Pharmacological evaluation of MRAP proteins on Xenopus neural melanocortin signaling., Tai X, Xue S, Zhang C, Liu Y, Chen J, Han Y, Lin G, Zhang C., J Cell Physiol. September 1, 2021; 236 (9): 6344-6361.


Pharmacological modulation of dual melanocortin-4 receptor signaling by melanocortin receptor accessory proteins in the Xenopus laevis., Li L, Xu Y, Zheng J, Kuang Z, Zhang C, Li N, Lin G, Zhang C., J Cell Physiol. August 1, 2021; 236 (8): 5980-5993.


Corticosterone Is Essential for Survival Through Frog Metamorphosis., Shewade LH, Schoephoerster JA, Patmann MD, Kulkarni SS, Buchholz DR., Endocrinology. December 1, 2020; 161 (12):


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S, Okada R, Hasunuma I, Nakada T., Gen Comp Endocrinol. December 1, 2019; 284 113212.


Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K, Balsalobre A, Mayran A, Christian H, Chénard V, St-Pierre J, Drouin J., Nat Commun. September 3, 2019; 10 (1): 3960.                                  


Identifying Common Features in the Activation of Melanocortin-2 Receptors: Studies on the Xenopus tropicalis Melanocortin-2 Receptor., Davis PE, Wilkinson EC, Dores RM., Int J Mol Sci. August 26, 2019; 20 (17):           


Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl., Bertolesi GE, Zhang JZ, McFarlane S., Pigment Cell Melanoma Res. July 1, 2019; 32 (4): 510-527.  


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E, Jeong I, Chung AY, Kim S, Kwon SH, Seong JY, Park HC., Sci Rep. March 22, 2019; 9 (1): 5025.              


Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration., Zhang M, Chen Y, Xu H, Yang L, Yuan F, Li L, Xu Y, Xu Y, Chen Y, Zhang C, Lin G., Dev Cell. August 20, 2018; 46 (4): 397-409.e5.                              


Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis., Prater CM, Garcia C, McGuire LP, Carr JA., Gen Comp Endocrinol. March 1, 2018; 258 91-98.


Spatial and temporal expression profiles of urocortin 3 mRNA in the brain of the chicken (Gallus gallus)., Grommen SVH, Scott MK, Darras VM, De Groef B., J Comp Neurol. August 1, 2017; 525 (11): 2583-2591.


Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation., Bertolesi GE, Song YN, Atkinson-Leadbeater K, Yang JJ, McFarlane S., Pigment Cell Melanoma Res. July 1, 2017; 30 (4): 413-423.


Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor., Cui MY, Hu CK, Pelletier C, Dziuba A, Slupski RH, Li C, Denver RJ., Endocrinology. November 1, 2014; 155 (11): 4202-14.


In silico analysis of the conservation of human toxicity and endocrine disruption targets in aquatic species., McRobb FM, Sahagún V, Kufareva I, Abagyan R., Environ Sci Technol. January 1, 2014; 48 (3): 1964-72.      


Evolution of the melanocortin-2 receptor in tetrapods: studies on Xenopus tropicalis MC2R and Anolis carolinensis MC2R., Davis P, Franquemont S, Liang L, Angleson JK, Dores RM., Gen Comp Endocrinol. July 1, 2013; 188 75-84.


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S, Nakakura T, Jansen EJ, Unno K, Okada R, Suzuki M, Martens GJ, Kikuyama S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


The melanocyte photosensory system in the human skin., Iyengar B., Springerplus. April 12, 2013; 2 (1): 158.                


Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis., Jansen EJ, van Bakel NH, Olde Loohuis NF, Hafmans TG, Arentsen T, Coenen AJ, Scheenen WJ, Martens GJ., J Biol Chem. August 10, 2012; 287 (33): 27537-46.              


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW, Selten MM, Roubos EW, Jenks BG., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG, Kuribara M, Kidane AH, Kramer BM, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent., Searcy BT, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Stafford P, Schwendiman AL, Soto-Pena J, Owen MC, Ramirez C, Phillips J, Veldhoen N, Helbing CC, Propper CR., Gen Comp Endocrinol. May 1, 2012; 176 (3): 481-92.


Expression of orexin receptors in the pituitary., Kaminski T, Smolinska N., Vitam Horm. January 1, 2012; 89 61-73.


Functional expression of frog and rainbow trout melanocortin 2 receptors using heterologous MRAP1s., Liang L, Sebag JA, Eagelston L, Serasinghe MN, Veo K, Reinick C, Angleson J, Hinkle PM, Dores RM., Gen Comp Endocrinol. October 1, 2011; 174 (1): 5-14.


The origins and evolution of vertebrate metamorphosis., Laudet V., Curr Biol. September 27, 2011; 21 (18): R726-37.            


ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells., Kuribara M, Jenks BG, Dijkmans TF, de Gouw D, Ouwens DT, Roubos EW, Vreugdenhil E, Scheenen WJ., Endocrinology. June 1, 2011; 152 (6): 2321-9.


α-TC1.9 cells--a model system for analyzing the endoproteolytic processing of POMC., Chen Q, Layton K, Veo K, Angleson JK, Dores RM., Gen Comp Endocrinol. May 15, 2011; 172 (1): 96-106.


Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells., Kuribara M, Kidane AH, Vos GA, de Gouw D, Roubos EW, Scheenen WJ, Jenks BG., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.


p24 Proteins from the same subfamily are functionally nonredundant., Strating JR, Bouw G, Hafmans TG, Martens GJ., Biochimie. March 1, 2011; 93 (3): 528-32.


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW, Van Wijk DC, Kozicz T, Scheenen WJ, Jenks BG., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M, Eijsink VD, Roubos EW, Jenks BG, Scheenen WJ., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells., Jansen EJ, Hafmans TG, Martens GJ., Mol Biol Cell. October 1, 2010; 21 (19): 3330-9.                


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC, Meijer KH, Roubos EW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


A developmental analysis of periodic albinism in the amphibian Xenopus laevis., Eagleson GW, van der Heijden RA, Roubos EW, Jenks BG., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.        


Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved., Isoldi MC, Provencio I, Castrucci AM., Gen Comp Endocrinol. January 1, 2010; 165 (1): 104-10.          


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA, Lustgarten J, Ahmed N, Bergfeld N, Bulin SE, Shoukfeh O, Tripathy S., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


The dynamic properties of intermediate filaments during organelle transport., Chang L, Barlan K, Chou YH, Grin B, Lakonishok M, Serpinskaya AS, Shumaker DK, Herrmann H, Gelfand VI, Goldman RD., J Cell Sci. August 15, 2009; 122 (Pt 16): 2914-23.                


COP-binding sites in p24delta2 are necessary for proper secretory cargo biosynthesis., Strating JR, Hafmans TG, Martens GJ., Int J Biochem Cell Biol. July 1, 2009; 41 (7): 1619-27.                  


Incomplete posttranslational prohormone modifications in hyperactive neuroendocrine cells., Strating JR, Martens GJ., BMC Cell Biol. April 13, 2009; 10 35.        


Functional diversity among p24 subfamily members., Strating JR, Hafmans TG, Martens GJ., Biol Cell. April 1, 2009; 101 (4): 207-19.


Neurochemistry and plasticity of the median eminence and neural pituitary lobe in relation to background adaptation of Xenopus laevis., van Wijk DC, Roubos EW., Ann N Y Acad Sci. April 1, 2009; 1163 524-7.


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C, Opitz R, Lutz I, Kloas W., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis., Scheenen WJ, Jansen EJ, Roubos EW, Martens GJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.


Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts., Kidane AH, Heinrich G, Dirks RP, de Ruyck BA, Lubsen NH, Roubos EW, Jenks BG., Endocrinology. March 1, 2009; 150 (3): 1361-8.


Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway., Jansen EJ, Scheenen WJ, Hafmans TG, Martens GJ., Biochim Biophys Acta. December 1, 2008; 1783 (12): 2301-10.

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???