Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (51) GO Terms (12) Nucleotides (528) Proteins (57) Interactants (394) Wiki

Papers associated with slc16a3

Limit to papers also referencing gene:
3 paper(s) referencing morpholinos

Results 1 - 50 of 51 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Participation of Monocarboxylate Transporter 8, But Not P-Glycoprotein, in Carrier-Mediated Cerebral Elimination of Phenytoin across the Blood-Brain Barrier., Jomura R, Akanuma SI, Bauer B, Yoshida Y, Kubo Y, Hosoya KI., Pharm Res. January 1, 2021; 38 (1): 113-125.

The γ-hydroxybutyric acid (GHB) analogue NCS-382 is a substrate for both monocarboxylate transporters subtypes 1 and 4., Thiesen L, Belew ZM, Griem-Krey N, Pedersen SF, Crocoll C, Nour-Eldin HH, Wellendorph P., Eur J Pharm Sci. February 15, 2020; 143 105203.

Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1., Aspatwar A, Tolvanen MEE, Schneider HP, Becker HM, Narkilahti S, Parkkila S, Deitmer JW., FEBS Open Bio. July 1, 2019; 9 (7): 1204-1211.    

Transport Mechanisms for the Nutritional Supplement β-Hydroxy-β-Methylbutyrate (HMB) in Mammalian Cells., Ogura J, Sato T, Higuchi K, Bhutia YD, Babu E, Masuda M, Miyauchi S, Rueda R, Pereira SL, Ganapathy V., Pharm Res. April 17, 2019; 36 (6): 84.

Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis., Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM., Front Neurosci. March 15, 2019; 13 1301.  

Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70., Forero-Quintero LS, Ames S, Schneider HP, Thyssen A, Boone CD, Andring JT, McKenna R, Casey JR, Deitmer JW, Becker HM., J Biol Chem. January 11, 2019; 294 (2): 593-607.

Preclinical Efficacy of the Novel Monocarboxylate Transporter 1 Inhibitor BAY-8002 and Associated Markers of Resistance., Quanz M, Bender E, Kopitz C, Grünewald S, Schlicker A, Schwede W, Eheim A, Toschi L, Neuhaus R, Richter C, Toedling J, Merz C, Lesche R, Kamburov A, Siebeneicher H, Bauser M, Hägebarth A., Mol Cancer Ther. November 1, 2018; 17 (11): 2285-2296.

The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells., Ames S, Pastorekova S, Becker HM., Oncotarget. June 15, 2018; 9 (46): 27940-27957.                    

A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells., Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM., Elife. May 29, 2018; 7                               

Three-dimensional reconstruction of the cranial and anterior spinal nerves in early tadpoles of Xenopus laevis (Pipidae, Anura)., Naumann B, Olsson L., J Comp Neurol. April 1, 2018; 526 (5): 836-857.                      

Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects., Corbet C, Bastien E, Draoui N, Doix B, Mignion L, Jordan BF, Marchand A, Vanherck JC, Chaltin P, Schakman O, Becker HM, Riant O, Feron O., Nat Commun. March 23, 2018; 9 (1): 1208.            

Identification of a selective inhibitor of human monocarboxylate transporter 4., Futagi Y, Kobayashi M, Narumi K, Furugen A, Iseki K., Biochem Biophys Res Commun. January 1, 2018; 495 (1): 427-432.

Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6., Jones RS, Parker MD, Morris ME., Mol Pharm. September 5, 2017; 14 (9): 2930-2936.

Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4., Noor SI, Pouyssegur J, Deitmer JW, Becker HM., FEBS J. January 1, 2017; 284 (1): 149-162.

Mechanism of antineoplastic activity of lonidamine., Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA, Glickson JD., Biochim Biophys Acta. December 1, 2016; 1866 (2): 151-162.

Effect of diclofenac on SLC16A3/MCT4 by the Caco-2 cell line., Sasaki S, Futagi Y, Ideno M, Kobayashi M, Narumi K, Furugen A, Iseki K., Drug Metab Pharmacokinet. June 1, 2016; 31 (3): 218-23.

The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters., Nancolas B, Guo L, Zhou R, Nath K, Nelson DS, Leeper DB, Blair IA, Glickson JD, Halestrap AP., Biochem J. April 1, 2016; 473 (7): 929-36.

Seizure control by decanoic acid through direct AMPA receptor inhibition., Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA, Hardege JD, Chen PE, Walker MC, Williams RS., Brain. February 1, 2016; 139 (Pt 2): 431-43.                  

In Vitro and In Vivo Evidence for Active Brain Uptake of the GHB Analog HOCPCA by the Monocarboxylate Transporter Subtype 1., Thiesen L, Kehler J, Clausen RP, Frølund B, Bundgaard C, Wellendorph P., J Pharmacol Exp Ther. August 1, 2015; 354 (2): 166-74.

Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity., Sasaki S, Kobayashi M, Futagi Y, Ogura J, Yamaguchi H, Iseki K., PLoS One. April 22, 2015; 10 (4): e0122738.                

Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity., Nancolas B, Sessions RB, Halestrap AP., Biochem J. February 15, 2015; 466 (1): 177-88.                    

Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II., Noor SI, Dietz S, Heidtmann H, Boone CD, McKenna R, Deitmer JW, Becker HM., J Biol Chem. February 13, 2015; 290 (7): 4476-86.

Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function., Jamali S, Klier M, Ames S, Barros LF, McKenna R, Deitmer JW, Becker HM., Sci Rep. January 12, 2015; 5 13605.              

[Role of Monocarboxylate Transporter in Statin-induced Cytotoxicity]., Kobayashi M., Yakugaku Zasshi. January 1, 2015; 135 (11): 1227-33.

On-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmission., Nagase M, Takahashi Y, Watabe AM, Kubo Y, Kato F., J Neurosci. February 12, 2014; 34 (7): 2605-17.

Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters., Klier M, Andes FT, Deitmer JW, Becker HM., J Biol Chem. January 31, 2014; 289 (5): 2765-75.

Characterization of monocarboxylate transporter 6: expression in human intestine and transport of the antidiabetic drug nateglinide., Kohyama N, Shiokawa H, Ohbayashi M, Kobayashi Y, Yamamoto T., Drug Metab Dispos. November 1, 2013; 41 (11): 1883-7.

Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4)., Sasaki S, Kobayashi M, Futagi Y, Ogura J, Yamaguchi H, Takahashi N, Iseki K., PLoS One. July 1, 2013; 8 (7): e67690.                

The SLC16 gene family - structure, role and regulation in health and disease., Halestrap AP., Mol Aspects Med. January 1, 2013; 34 (2-3): 337-49.

Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT)., Moschen I, Bröer A, Galić S, Lang F, Bröer S., Neurochem Res. November 1, 2012; 37 (11): 2562-8.

Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D, Horb M., Genesis. March 1, 2012; 50 (3): 271-85.                        

Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II., Klier M, Schüler C, Halestrap AP, Sly WS, Deitmer JW, Becker HM., J Biol Chem. August 5, 2011; 286 (31): 27781-91.

Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease., Dubaissi E, Papalopulu N., Dis Model Mech. March 1, 2011; 4 (2): 179-92.                        

Kinetic analysis and design of experiments to identify the catalytic mechanism of the monocarboxylate transporter isoforms 4 and 1., Vinnakota KC, Beard DA., Biophys J. January 19, 2011; 100 (2): 369-80.

The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein., Ovens MJ, Manoharan C, Wilson MC, Murray CM, Halestrap AP., Biochem J. October 15, 2010; 431 (2): 217-25.              

Characterization of thyroid hormone transporter expression during tissue-specific metamorphic events in Xenopus tropicalis., Connors KA, Korte JJ, Anderson GW, Degitz SJ., Gen Comp Endocrinol. August 1, 2010; 168 (1): 149-59.            

Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II., Becker HM, Klier M, Deitmer JW., J Membr Biol. April 1, 2010; 234 (2): 125-35.

AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10., Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP., Biochem J. January 15, 2010; 425 (3): 523-30.              

Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM, Kim SK, Abitua PB, Park TJ, Herrington ER, Kitayama A, Grow MW, Ueno N, Wallingford JB., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          

Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KW, Papalopulu N., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  

The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity., Manoharan C, Wilson MC, Sessions RB, Halestrap AP., Mol Membr Biol. January 1, 2006; 23 (6): 486-98.                

Functional characterization of human monocarboxylate transporter 6 (SLC16A5)., Murakami Y, Kohyama N, Kobayashi Y, Ohbayashi M, Ohtani H, Sawada Y, Yamamoto T., Drug Metab Dispos. December 1, 2005; 33 (12): 1845-51.

Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70)., Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP., J Biol Chem. July 22, 2005; 280 (29): 27213-21.

An atlas of differential gene expression during early Xenopus embryogenesis., Pollet N, Muncke N, Verbeek B, Li Y, Fenger U, Delius H, Niehrs C., Mech Dev. March 1, 2005; 122 (3): 365-439.                                                                                                                                                        

Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice., Grubb BR, Jones JH, Boucher RC., Am J Physiol Lung Cell Mol Physiol. March 1, 2004; 286 (3): L588-95.

Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes., Becker HM, Bröer S, Deitmer JW., Biophys J. January 1, 2004; 86 (1 Pt 1): 235-47.

Control of P2X(2) channel permeability by the cytosolic domain., Eickhorst AN, Berson A, Cockayne D, Lester HA, Khakh BS., J Gen Physiol. August 1, 2002; 120 (2): 119-31.                  

Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle., Manning Fox JE, Meredith D, Halestrap AP., J Physiol. December 1, 2000; 529 Pt 2 285-93.

The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells., Dimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S., Biochem J. August 15, 2000; 350 Pt 1 219-27.

The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation., Halestrap AP, Price NT., Biochem J. October 15, 1999; 343 Pt 2 281-99.

Page(s): 1 2 Next