Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (69) GO Terms (5) Nucleotides (30) Proteins (9) Interactants (77) Wiki
XB-GENEPAGE-6492177

Papers associated with pgla



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin., Hoffmann W, Richter K, Kreil G., EMBO J. January 1, 1983; 2 (5): 711-4.


Xenopsin: the neurotensin-like octapeptide from Xenopus skin at the carboxyl terminus of its precursor., Sures I, Crippa M., Proc Natl Acad Sci U S A. January 1, 1984; 81 (2): 380-4.


Biosynthesis of peptides in the skin of Xenopus laevis: isolation of novel peptides predicted from the sequence of cloned cDNAs., Richter K, Aschauer H, Kreil G., Peptides. January 1, 1985; 6 Suppl 3 17-21.


A mass spectrometric assay for novel peptides: application to Xenopus laevis skin secretions., Gibson BW, Poulter L, Williams DH., Peptides. January 1, 1985; 6 Suppl 3 23-7.


Solid-phase synthesis of PYLa and isolation of its natural counterpart, PGLa [PYLa-(4-24)] from skin secretion of Xenopus laevis., Andreu D, Aschauer H, Kreil G, Merrifield RB., Eur J Biochem. June 18, 1985; 149 (3): 531-5.


A mass spectrometric method for the identification of novel peptides in Xenopus laevis skin secretions., Gibson BW, Poulter L, Williams DH., J Nat Prod. January 1, 1986; 49 (1): 26-34.


Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis., Gibson BW, Poulter L, Williams DH, Maggio JE., J Biol Chem. April 25, 1986; 261 (12): 5341-9.


Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands., Flucher BE, Lenglachner-Bachinger C, Pohlhammer K, Adam H, Mollay C., J Cell Biol. December 1, 1986; 103 (6 Pt 1): 2299-309.   


Biogenic amines and active peptides in the skin of fifty-two African amphibian species other than bufonids., Roseghini M, Falconieri Erspamer G, Severini C., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1988; 91 (2): 281-6.


Antimicrobial properties of peptides from Xenopus granular gland secretions., Soravia E, Martini G, Zasloff M., FEBS Lett. February 15, 1988; 228 (2): 337-40.


Magainins and the disruption of membrane-linked free-energy transduction., Westerhoff HV, Jureti D, Hendler RW, Zasloff M., Proc Natl Acad Sci U S A. September 1, 1989; 86 (17): 6597-601.


Isolation and sequence of canine xenopsin and an extended fragment from its precursor., Carraway RE, Mitra SP., Peptides. January 1, 1990; 11 (4): 747-52.


Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa., Williams RW, Starman R, Taylor KM, Gable K, Beeler T, Zasloff M, Covell D., Biochemistry. May 8, 1990; 29 (18): 4490-6.


Antimicrobial peptides in the stomach of Xenopus laevis., Moore KS, Bevins CL, Brasseur MM, Tomassini N, Turner K, Eck H, Zasloff M., J Biol Chem. October 15, 1991; 266 (29): 19851-7.   


A novel peptide-producing cell in Xenopus: multinucleated gastric mucosal cell strikingly similar to the granular gland of the skin., Moore KS, Bevins CL, Tomassini N, Huttner KM, Sadler K, Moreira JE, Reynolds J, Zasloff M., J Histochem Cytochem. March 1, 1992; 40 (3): 367-78.


Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes., Vaz Gomes A, de Waal A, Berden JA, Westerhoff HV., Biochemistry. May 25, 1993; 32 (20): 5365-72.


Expression of magainin antimicrobial peptide genes in the developing granular glands of Xenopus skin and induction by thyroid hormone., Reilly DS, Tomassini N, Zasloff M., Dev Biol. March 1, 1994; 162 (1): 123-33.   


A Paneth cell analogue in Xenopus small intestine expresses antimicrobial peptide genes: conservation of an intestinal host-defense system., Reilly DS, Tomassini N, Bevins CL, Zasloff M., J Histochem Cytochem. June 1, 1994; 42 (6): 697-704.   


Isolation and properties of a multicatalytic proteinase complex from Xenopus laevis skin secretion., Camarão GC, Carvalho KM, Cohen P., Braz J Med Biol Res. December 1, 1994; 27 (12): 2863-7.


Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes., Westerhoff HV, Zasloff M, Rosner JL, Hendler RW, De Waal A, Vaz Gomes A, Jongsma PM, Riethorst A, Juretić D., Eur J Biochem. March 1, 1995; 228 (2): 257-64.


Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids., Latal A, Degovics G, Epand RF, Epand RM, Lohner K., Eur J Biochem. September 15, 1997; 248 (3): 938-46.


Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa., Matsuzaki K, Mitani Y, Akada KY, Murase O, Yoneyama S, Zasloff M, Miyajima K., Biochemistry. October 27, 1998; 37 (43): 15144-53.


A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides., Helmerhorst EJ, Reijnders IM, van 't Hof W, Veerman EC, Nieuw Amerongen AV., FEBS Lett. April 23, 1999; 449 (2-3): 105-10.


Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects., Wieprecht T, Apostolov O, Beyermann M, Seelig J., Biochemistry. January 18, 2000; 39 (2): 442-52.


Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity., van't Hof W, Reijnders IM, Helmerhorst EJ, Walgreen-Weterings E, Simoons-Smit IM, Veerman EC, Amerongen AV., Antonie Van Leeuwenhoek. August 1, 2000; 78 (2): 163-9.


Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study., Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K., Biochemistry. October 16, 2001; 40 (41): 12395-9.


Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study., Konovalov O, Myagkov I, Struth B, Lohner K., Eur Biophys J. October 1, 2002; 31 (6): 428-37.


Candida glabrata is unusual with respect to its resistance to cationic antifungal proteins., Helmerhorst EJ, Venuleo C, Beri A, Oppenheim FG., Yeast. July 15, 2005; 22 (9): 705-14.


Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli., Meincken M, Holroyd DL, Rautenbach M., Antimicrob Agents Chemother. October 1, 2005; 49 (10): 4085-92.


Analyses of dose-response curves to compare the antimicrobial activity of model cationic alpha-helical peptides highlights the necessity for a minimum of two activity parameters., Rautenbach M, Gerstner GD, Vlok NM, Kulenkampff J, Westerhoff HV., Anal Biochem. March 1, 2006; 350 (1): 81-90.


Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin., Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS., J Biol Chem. October 27, 2006; 281 (43): 32089-94.


Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism., Nishida M, Imura Y, Yamamoto M, Kobayashi S, Yano Y, Matsuzaki K., Biochemistry. December 11, 2007; 46 (49): 14284-90.


Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers., Strandberg E, Kanithasen N, Tiltak D, Bürck J, Wadhwani P, Zwernemann O, Ulrich AS., Biochemistry. February 26, 2008; 47 (8): 2601-16.


Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis., Suzuki K, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K., Dev Growth Differ. May 1, 2009; 51 (4): 411-27.   


Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR., Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS., Biochim Biophys Acta. August 1, 2009; 1788 (8): 1667-79.


Biological activity and structural aspects of PGLa interaction with membrane mimetic systems., Lohner K, Prossnigg F., Biochim Biophys Acta. August 1, 2009; 1788 (8): 1656-66.


Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae)., Conlon JM, Al-Ghaferi N, Ahmed E, Meetani MA, Leprince J, Nielsen PF., Peptides. June 1, 2010; 31 (6): 989-94.


19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes., Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS., J Am Chem Soc. July 7, 2010; 132 (26): 8822-4.


Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)., Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM., Comp Biochem Physiol C Toxicol Pharmacol. November 1, 2010; 152 (4): 467-72.


Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions., Mechkarska M, Eman A, Coquet L, Jérôme L, Jouenne T, Vaudry H, King JD, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2011; 6 (2): 206-12.


Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis., Hou F, Li J, Pan P, Xu J, Liu L, Liu W, Song B, Li N, Wan J, Gao H., Int J Antimicrob Agents. December 1, 2011; 38 (6): 510-5.


Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)., King JD, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Takada K, Conlon JM., Peptides. January 1, 2012; 33 (1): 35-43.


Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae)., Conlon JM, Mechkarska M, King JD., Gen Comp Endocrinol. May 1, 2012; 176 (3): 513-8.   


Reorientation and dimerization of the membrane-bound antimicrobial peptide PGLa from microsecond all-atom MD simulations., Ulmschneider JP, Smith JC, Ulmschneider MB, Ulrich AS, Strandberg E., Biophys J. August 8, 2012; 103 (3): 472-482.


Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring., Mechkarska M, Meetani M, Michalak P, Vaksman Z, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2012; 7 (3): 285-91.


Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA)., Conlon JM, Mechkarska M, Prajeep M, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD., Peptides. September 1, 2012; 37 (1): 113-9.


Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents., Srinivasan D, Mechkarska M, Abdel-Wahab YH, Flatt PR, Conlon JM., Biochimie. February 1, 2013; 95 (2): 429-35.


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.   


Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature., Strandberg E, Zerweck J, Wadhwani P, Ulrich AS., Biophys J. March 19, 2013; 104 (6): L9-11.


A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids., Mechkarska M, Prajeep M, Leprince J, Vaudry H, Meetani MA, Evans BJ, Conlon JM., Peptides. July 1, 2013; 45 1-8.

???pagination.result.page??? 1 2 ???pagination.result.next???