Results 1 - 50 of 74 results
Thyroid Hormone Receptor α Controls the Hind Limb Metamorphosis by Regulating Cell Proliferation and Wnt Signaling Pathways in Xenopus tropicalis. , Tanizaki Y, Shibata Y, Zhang H , Shi YB , Shi YB ., Int J Mol Sci. January 22, 2022; 23 (3):
Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes. , Liu K , Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD ., Neuroscience. July 15, 2021; 467 110-121.
Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles. , Hiramoto M, Cline HT ., STAR Protoc. January 8, 2021; 2 (1): 100252.
Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis. , Prater CM, Harris BN, Carr JA., Horm Behav. April 1, 2020; 120 104707.
Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. , Shibata Y, Tanizaki Y, Shi YB , Shi YB ., Cell Biosci. March 27, 2020; 10 46.
Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors. , McKeown CR , Cline HT ., Development. October 24, 2019; 146 (20):
Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors. , Islam R, Prater CM, Harris BN, Carr JA., Gen Comp Endocrinol. October 1, 2019; 282 113214.
N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo. , Jin T, Peng G, Wu E, Mendiratta S, Elul T ., Brain Res. October 15, 2018; 1697 34-44.
Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts. , Lametschwandtner A, Minnich B., J Morphol. July 1, 2018; 279 (7): 950-969.
Role of the visual experience-dependent nascent proteome in neuronal plasticity. , Liu HH , McClatchy DB, Schiapparelli L, Shen W, Yates JR, Cline HT ., Elife. February 7, 2018; 7
Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. , Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB , Shi YB ., Endocrinology. June 1, 2017; 158 (6): 1985-1998.
Direct Regulation of Histidine Ammonia-Lyase 2 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cells. , Luu N, Fu L, Fujimoto K , Shi YB , Shi YB ., Endocrinology. April 1, 2017; 158 (4): 1022-1033.
Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity. , Blackiston DJ , Vien K, Levin M ., NPJ Regen Med. March 30, 2017; 2 8.
An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum. , Hamodi AS, Liu Z, Pratt KG ., Elife. November 23, 2016; 5
Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles. , Gambrill AC, Faulkner R, Cline HT ., J Neurophysiol. November 1, 2016; 116 (5): 2281-2297.
HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum. , Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W., Front Cell Neurosci. May 6, 2016; 10 221.
An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. , Bestman JE , Huang LC, Lee-Osbourne J, Cheung P, Cline HT ., Dev Biol. December 15, 2015; 408 (2): 269-91.
Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum. , Guo X, Ruan H, Li X, Qin L, Tao Y, Qi X, Gao J, Gan L, Duan S, Shen W., Front Cell Neurosci. September 23, 2015; 9 510.
Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis. , Okada M, Miller TC, Fu L, Shi YB ., Endocrinology. September 1, 2015; 156 (9): 3381-93.
HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum. , Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. March 16, 2015; 10 (3): e0120118.
A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. , Blackiston DJ , Anderson GM, Rahman N, Bieck C, Levin M ., Neurotherapeutics. January 1, 2015; 12 (1): 170-84.
FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles. , Faulkner RL, Wishard TJ, Thompson CK, Liu HH , Cline HT ., eNeuro. January 1, 2015; 2 (1): e0055.
Clonal relationships impact neuronal tuning within a phylogenetically ancient vertebrate brain structure. , Muldal AM, Lillicrap TP, Richards BA, Akerman CJ., Curr Biol. August 18, 2014; 24 (16): 1929-33.
Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis. , McKeown CR , Sharma P, Sharipov HE, Shen W, Cline HT ., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.
Global hyper-synchronous spontaneous activity in the developing optic tectum. , Imaizumi K, Shih JY, Farris HE., Sci Rep. January 1, 2013; 3 1552.
Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. , Matsuura K, Fujimoto K , Das B, Fu L, Lu CD, Shi YB ., Cell Biosci. July 16, 2012; 2 (1): 25.
Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis. , Higenell V, Han SM, Feldheim DA, Scalia F, Ruthazer ES ., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.
Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. , Wizenmann A, Brunet I, Lam J, Sonnier L, Beurdeley M, Zarbalis K, Weisenhorn-Vogt D, Weinl C, Dwivedy A, Joliot A, Wurst W, Holt C , Prochiantz A., Neuron. November 12, 2009; 64 (3): 355-366.
Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis. , Buchholz DR , Ishizuya-Oka A , Shi YB , Shi YB ., Gene Expr Patterns. May 1, 2004; 4 (3): 321-8.
MAP2 phosphorylation and visual plasticity in Xenopus. , Guo Y, Sánchez C, Udin SB ., Dev Biol. June 29, 2001; 905 (1-2): 134-41.
Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation. , Rentería RC, Constantine-Paton M., J Neurosci. August 15, 1999; 19 (16): 7066-76.
Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study. , Titmus MJ, Tsai HJ, Lima R, Udin SB ., Neuroscience. January 1, 1999; 91 (2): 753-69.
Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity. , Lin SY, Constantine-Paton M., J Neurosci. May 15, 1998; 18 (10): 3725-37.
Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. , Zhao Y, Szaro BG ., J Neurobiol. November 20, 1997; 33 (6): 811-24.
Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation. , Hirsch N , Harris WA ., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.
The contribution of protein kinases to plastic events in the superior colliculus. , McCrossan D, Withington DJ, Platt B., Prog Neuropsychopharmacol Biol Psychiatry. April 1, 1997; 21 (3): 487-505.
The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development. , Cohen-Cory S , Escandón E, Fraser SE ., Dev Biol. October 10, 1996; 179 (1): 102-15.
Polysialylated neural cell adhesion molecule and plasticity of ipsilateral connections in Xenopus tectum. , Williams DK, Gannon-Murakami L, Rougon G, Udin SB ., Neuroscience. January 1, 1996; 70 (1): 277-85.
Absence of topography in precociously innervated tecta. , Chien CB, Cornel EM, Holt CE ., Development. August 1, 1995; 121 (8): 2621-31.
The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis. , Zhao Y, Szaro BG ., J Neurosci. June 1, 1995; 15 (6): 4629-40.
Developmental changes in melanin-concentrating hormone in Rana temporaria. , Francis K, Baker BI., Gen Comp Endocrinol. May 1, 1995; 98 (2): 157-65.
Brain regions and encephalization in anurans: adaptation or stability? , Taylor GM, Nol E, Boire D., Brain Behav Evol. January 1, 1995; 45 (2): 96-109.
Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. , O'Rourke NA, Cline HT , Fraser SE ., Neuron. April 1, 1994; 12 (4): 921-34.
Ultrastructure of the crossed isthmotectal projection in Xenopus frogs. , Udin SB , Fisher MD , Norden JJ., J Comp Neurol. February 8, 1990; 292 (2): 246-54.
The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons. , Taylor JS., Development. January 1, 1990; 108 (1): 147-58.
The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis. , Taylor JS, Gaze RM., Anat Embryol (Berl). January 1, 1990; 181 (4): 393-404.
Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry. , Grant S, Keating MJ., Exp Brain Res. January 1, 1989; 75 (1): 99-116.
The ultrastructural organization of the isthmic nucleus in Xenopus. , McCart R, Straznicky C., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.
The effects of tectal lesion on the survival of isthmic neurones in Xenopus. , Straznicky C, McCart R., Development. December 1, 1987; 101 (4): 869-76.
Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies. , Takagi S , Tsuji T, Amagai T, Takamatsu T, Fujisawa H ., Dev Biol. July 1, 1987; 122 (1): 90-100.