Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (301) GO Terms (2) Nucleotides (253) Proteins (43) Interactants (1359) Wiki
XB-GENEPAGE-6539689

Papers associated with krt12.4



???displayGene.coCitedPapers???
54 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Translational products of mRNAs coding for non-epidermal cytokeratins., Magin TM, Jorcano JL, Franke WW., EMBO J. January 1, 1983; 2 (8): 1387-92.


Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus., Franz JK, Gall L, Williams MA, Picheral B, Franke WW., Proc Natl Acad Sci U S A. October 1, 1983; 80 (20): 6254-8.          


Amino acid sequence of the carboxy-terminal part of an acidic type I cytokeratin of molecular weight 51 000 from Xenopus laevis epidermis as predicted from the cDNA sequence., Hoffmann W, Franz JK., EMBO J. June 1, 1984; 3 (6): 1301-6.


Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti-mammalian vimentin antibodies., Godsave SF, Anderton BH, Heasman J, Wylie CC., J Embryol Exp Morphol. October 1, 1984; 83 169-87.


Intermediate filaments in the Xenopus oocyte: the appearance and distribution of cytokeratin-containing filaments., Godsave SF, Wylie CC, Lane EB, Anderton BH., J Embryol Exp Morphol. October 1, 1984; 83 157-67.          


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R, Krohne G, Franke WW., Cell. May 1, 1985; 41 (1): 177-90.                      


Epidermal keratin gene expressed in embryos of Xenopus laevis., Jonas E, Sargent TD, Dawid IB., Proc Natl Acad Sci U S A. August 1, 1985; 82 (16): 5413-7.


Amino acid sequence microheterogeneities of basic (type II) cytokeratins of Xenopus laevis epidermis and evolutionary conservativity of helical and non-helical domains., Hoffmann W, Franz JK, Franke WW., J Mol Biol. August 20, 1985; 184 (4): 713-24.


Developmentally regulated cytokeratin gene in Xenopus laevis., Winkles JA, Sargent TD, Parry DA, Jonas E, Dawid IB., Mol Cell Biol. October 1, 1985; 5 (10): 2575-81.


The cytoskeleton of Xenopus oocytes and its role in development., Wylie CC, Brown D, Godsave SF, Quarmby J, Heasman J., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 1-15.        


Cytokeratin expression in simple epithelia. III. Detection of mRNAs encoding human cytokeratins nos. 8 and 18 in normal and tumor cells by hybridization with cDNA sequences in vitro and in situ., Leube RE, Bosch FX, Romano V, Zimbelmann R, Höfler H, Franke WW., Differentiation. January 1, 1986; 33 (1): 69-85.


Genesis and regression of the figures of Eberth and occurrence of cytokeratin aggregates in the epidermis of anuran larvae., Fox H, Whitear M., Anat Embryol (Berl). January 1, 1986; 174 (1): 73-82.


Cytokeratin expression in simple epithelia. II. cDNA cloning and sequence characteristics of bovine cytokeratin A (no. 8)., Magin TM, Jorcano JL, Franke WW., Differentiation. January 1, 1986; 30 (3): 254-64.


Cell interactions and the control of gene activity during early development of Xenopus laevis., Sargent TD, Jamrich M, Dawid IB., Dev Biol. March 1, 1986; 114 (1): 238-46.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF, Anderton BH, Wylie CC., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Cloning of cDNA and amino acid sequence of a cytokeratin expressed in oocytes of Xenopus laevis., Franz JK, Franke WW., Proc Natl Acad Sci U S A. September 1, 1986; 83 (17): 6475-9.


Stage-specific keratins in Xenopus laevis embryos and tadpoles: the XK81 gene family., Miyatani S, Winkles JA, Sargent TD, Dawid IB., J Cell Biol. November 1, 1986; 103 (5): 1957-65.


Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man., Jahn L, Fouquet B, Rohe K, Franke WW., Differentiation. January 1, 1987; 36 (3): 234-54.                        


Identification of the conserved, conformation-dependent cytokeratin epitope recognized by monoclonal antibody (lu-5)., Franke WW, Winter S, von Overbeck J, Gudat F, Heitz PU, Stähli C., Virchows Arch A Pathol Anat Histopathol. January 1, 1987; 411 (2): 137-47.


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR, Melton DA., Development. March 1, 1987; 99 (3): 311-25.                  


Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis., Jamrich M, Sargent TD, Dawid IB., Genes Dev. April 1, 1987; 1 (2): 124-32.                


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW, Maynell LA, Polson AG., Development. July 1, 1987; 100 (3): 543-57.              


Analysis of cytokeratin domains by cloning and expression of intact and deleted polypeptides in Escherichia coli., Magin TM, Hatzfeld M, Franke WW., EMBO J. September 1, 1987; 6 (9): 2607-15.


Cell proliferation in ectodermal explants from Xenopus embryos., Winklbauer R., Rouxs Arch Dev Biol. May 1, 1988; 197 (3): 141-147.


Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE, Jamrich M, Richter K, Sargent TD, Dawid IB., Genes Dev. July 1, 1988; 2 (7): 853-62.            


Amino acid sequence microheterogeneities of a type I cytokeratin of Mr 51,000 from Xenopus laevis epidermis., Hoffmann W, Sterrer S, Königstorfer A., FEBS Lett. September 12, 1988; 237 (1-2): 178-82.


The gene encoding Xenopus embryonic epidermal keratin XK70A exhibits a hybrid type I-type II intron pattern., Krasner AS, Cheng AK, Dawid IB, Sargent TD., Nucleic Acids Res. September 12, 1988; 16 (17): 8728.


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG, Gainer H., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Localized maternal mRNA related to transforming growth factor beta mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes., Pondel MD, King ML., Proc Natl Acad Sci U S A. October 1, 1988; 85 (20): 7612-6.


Cytoskeletons of retinal pigment epithelial cells: interspecies differences of expression patterns indicate independence of cell function from the specific complement of cytoskeletal proteins., Owaribe K, Kartenbeck J, Rungger-Brändle E, Franke WW., Cell Tissue Res. November 1, 1988; 254 (2): 301-15.


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B, Herrmann H, Franz JK, Franke WW., Development. December 1, 1988; 104 (4): 533-48.                      


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA, Polson AG, Klymkowsky MW., Development. January 1, 1989; 105 (1): 61-74.                      


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H, Fouquet B, Franke WW., Development. February 1, 1989; 105 (2): 279-98.                      


Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis., Jamrich M, Sato S., Development. April 1, 1989; 105 (4): 779-86.            


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T, Fouquet B, Rungger-Brändle E, Franke WW., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Transcriptional regulation of a Xenopus embryonic epidermal keratin gene., Jonas EA, Snape AM, Sargent TD., Development. June 1, 1989; 106 (2): 399-405.


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E, Achtstätter T, Franke WW., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs., Klymkowsky MW, Maynell LA., Dev Biol. August 1, 1989; 134 (2): 479-85.      


Mapping of transcription units on Xenopus laevis lampbrush chromosomes by in situ hybridization with biotin-labeled cDNA probes., Weber T, Schmidt E, Scheer U., Eur J Cell Biol. October 1, 1989; 50 (1): 144-53.


[An immunohistochemical study of early embryogenesis in the clawed toad Xenopus laevis by using monoclonal antibodies to intermediate filament proteins]., Zaraĭskiĭ AG, Zatevakhina GV., Ontogenez. January 1, 1990; 21 (3): 267-73.


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE, Dawid IB., Dev Biol. February 1, 1990; 137 (2): 414-8.        


Organization and sequence of the human gene encoding cytokeratin 8., Krauss S, Franke WW., Gene. February 14, 1990; 86 (2): 241-9.


XK endo B is preferentially expressed in several induced embryonic tissues during the development of Xenopus laevis., LaFlamme SE, Dawid IB., Differentiation. March 1, 1990; 43 (1): 1-9.          


KTF-1, a transcriptional activator of Xenopus embryonic keratin expression., Snape AM, Jonas EA, Sargent TD., Development. May 1, 1990; 109 (1): 157-65.


[Concanavalin-binding proteins and cytokeratins in different tissues of the early amphibian gastrula (Rana temporaria, Xenopus laevis)]., Simirskiĭ VN, Aleĭnikova KS, Fedtsova NG, Gorgoliuk NA, Mikhaĭlov AT., Ontogenez. January 1, 1991; 22 (3): 245-56.


Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1., Klymkowsky MW, Maynell LA, Nislow C., J Cell Biol. August 1, 1991; 114 (4): 787-97.


Transcription factor AP-2 is tissue-specific in Xenopus and is closely related or identical to keratin transcription factor 1 (KTF-1)., Snape AM, Winning RS, Sargent TD., Development. September 1, 1991; 113 (1): 283-93.


Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs., Houliston E, Elinson RP., J Cell Biol. September 1, 1991; 114 (5): 1017-28.


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP, Heasman J, Wylie CC., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


The role of intermediate filaments in early Xenopus development studied by antisense depletion of maternal mRNA., Heasman J, Torpey N, Wylie C., Dev Suppl. January 1, 1992; 119-25.

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???