Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (53) GO Terms (3) Nucleotides (170) Proteins (47) Interactants (109) Wiki
XB-GENEPAGE-968808

Papers associated with xrcc1



Limit to papers also referencing gene:

Results 1 - 50 of 53 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Purification and Characterization of Human DNA Ligase IIIα Complexes After Expression in Insect Cells., Rashid I, Tsai MS, Sverzhinsky A, Hlaing AS, Shih B, Thwin AC, Lin JG, Maw SS, Pascal JM, Tomkinson AE., Methods Mol Biol. January 1, 2022; 2444 243-269.


HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation., Kumamoto S, Nishiyama A, Chiba Y, Miyashita R, Konishi C, Azuma Y, Nakanishi M., Nucleic Acids Res. May 21, 2021; 49 (9): 5003-5016.            


APE1 senses DNA single-strand breaks for repair and signaling., Lin Y, Raj J, Li J, Ha A, Hossain MA, Richardson C, Mukherjee P, Yan S., Nucleic Acids Res. February 28, 2020; 48 (4): 1925-1940.              


Distinct roles of XRCC1 in genome integrity in Xenopus egg extracts., Cupello S, Lin Y, Yan S., Biochem J. December 23, 2019; 476 (24): 3791-3804.                


Characterization of a Protein Phosphatase Type-1 and a Kinase Anchoring Protein in Plasmodium falciparum., Lenne A, De Witte C, Tellier G, Hollin T, Aliouat EM, Martoriati A, Cailliau K, Saliou JM, Khalife J, Pierrot C., Front Microbiol. October 31, 2018; 9 2617.              


APE2 promotes DNA damage response pathway from a single-strand break., Lin Y, Bai L, Cupello S, Hossain MA, Deem B, McLeod M, Raj J, Yan S., Nucleic Acids Res. March 16, 2018; 46 (5): 2479-2494.                


Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder., Czarny P, Kwiatkowski D, Toma M, Gałecki P, Orzechowska A, Bobińska K, Bielecka-Kowalska A, Szemraj J, Berk M, Anderson G, Śliwiński T., Med Sci Monit. November 20, 2016; 22 4455-4474.


TPX2 in human clear cell renal carcinoma: Expression, function and prognostic significance., Chen QI, Cao B, Nan N, Wang YU, Zhai XU, Li Y, Chong T., Oncol Lett. May 1, 2016; 11 (5): 3515-3521.


A computational approach to determine susceptibility to cancer by evaluating the deleterious effect of nsSNP in XRCC1 gene on binding interaction of XRCC1 protein with ligase III., Singh PK, Mistry KN., Gene. January 15, 2016; 576 (1 Pt 1): 141-9.  


Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2., Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A, Mare G, Briskey D, Brath H, Wagner KH., PLoS One. January 1, 2016; 11 (9): e0162082.  


DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair., Abdou I, Poirier GG, Hendzel MJ, Weinfeld M., Nucleic Acids Res. January 1, 2015; 43 (2): 875-92.                      


Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining., Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE, Iliakis G., Nucleic Acids Res. June 1, 2014; 42 (10): 6380-92.            


Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose)., Wei L, Nakajima S, Hsieh CL, Kanno S, Masutani M, Levine AS, Yasui A, Lan L., J Cell Sci. October 1, 2013; 126 (Pt 19): 4414-23.            


Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells., Le Chalony C, Hoffschir F, Gauthier LR, Gross J, Biard DS, Boussin FD, Pennaneach V., Cell Mol Life Sci. September 1, 2012; 69 (17): 2933-49.              


Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells., Arakawa H, Bednar T, Wang M, Paul K, Mladenov E, Bencsik-Theilen AA, Iliakis G., Nucleic Acids Res. March 1, 2012; 40 (6): 2599-610.        


Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair., Odell ID, Barbour JE, Murphy DL, Della-Maria JA, Sweasy JB, Tomkinson AE, Wallace SS, Pederson DS., Mol Cell Biol. November 1, 2011; 31 (22): 4623-32.


The structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes., Cuneo MJ, Gabel SA, Krahn JM, Ricker MA, London RE., Nucleic Acids Res. September 1, 2011; 39 (17): 7816-27.              


Disconnecting XRCC1 and DNA ligase III., Katyal S, McKinnon PJ., Cell Cycle. July 15, 2011; 10 (14): 2269-75.


Cardiac neural crest is dispensable for outflow tract septation in Xenopus., Lee YH, Saint-Jeannet JP., Development. May 1, 2011; 138 (10): 2025-34.                  


Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein., Serebrovskaya EO, Gorodnicheva TV, Ermakova GV, Solovieva EA, Sharonov GV, Zagaynova EV, Chudakov DM, Lukyanov S, Zaraisky AG, Lukyanov KA., Biochem J. April 1, 2011; 435 (1): 65-71.


Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair., Simsek D, Furda A, Gao Y, Artus J, Brunet E, Hadjantonakis AK, Van Houten B, Shuman S, McKinnon PJ, Jasin M., Nature. March 10, 2011; 471 (7337): 245-8.


DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair., Gao Y, Katyal S, Lee Y, Zhao J, Rehg JE, Russell HR, McKinnon PJ., Nature. March 10, 2011; 471 (7337): 240-4.


XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair., Parsons JL, Dianova II, Finch D, Tait PS, Ström CE, Helleday T, Dianov GL., DNA Repair (Amst). July 1, 2010; 9 (7): 835-41.


DNA 3'-phosphatase activity is critical for rapid global rates of single-strand break repair following oxidative stress., Breslin C, Caldecott KW., Mol Cell Biol. September 1, 2009; 29 (17): 4653-62.


Localization of X-ray cross complementing gene 1 protein in the nuclear matrix is controlled by casein kinase II-dependent phosphorylation in response to oxidative damage., Kubota Y, Takanami T, Higashitani A, Horiuchi S., DNA Repair (Amst). August 6, 2009; 8 (8): 953-60.


XRCC1 interacts with the p58 subunit of DNA Pol alpha-primase and may coordinate DNA repair and replication during S phase., Lévy N, Oehlmann M, Delalande F, Nasheuer HP, Van Dorsselaer A, Schreiber V, de Murcia G, Ménissier-de Murcia J, Maiorano D, Bresson A., Nucleic Acids Res. June 1, 2009; 37 (10): 3177-88.            


CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins., Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL., Mol Cell. February 29, 2008; 29 (4): 477-87.


RETRACTED: Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner., Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LHF, Fousteri MI., Mol Cell. July 20, 2007; 27 (2): 311-323.


Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3'-phosphate and 3'-phosphoglycolate ends., Takahashi T, Tada M, Igarashi S, Koyama A, Date H, Yokoseki A, Shiga A, Yoshida Y, Tsuji S, Nishizawa M, Onodera O., Nucleic Acids Res. January 1, 2007; 35 (11): 3797-809.                  


NEIL2-initiated, APE-independent repair of oxidized bases in DNA: Evidence for a repair complex in human cells., Das A, Wiederhold L, Leppard JB, Kedar P, Prasad R, Wang H, Boldogh I, Karimi-Busheri F, Weinfeld M, Tomkinson AE, Wilson SH, Mitra S, Hazra TK., DNA Repair (Amst). December 9, 2006; 5 (12): 1439-48.


Early embryonic lethality due to targeted inactivation of DNA ligase III., Puebla-Osorio N, Lacey DB, Alt FW, Zhu C., Mol Cell Biol. May 1, 2006; 26 (10): 3935-41.


Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair., Heale JT, Ball AR, Schmiesing JA, Kim JS, Kong X, Zhou S, Hudson DF, Earnshaw WC, Yokomori K., Mol Cell. March 17, 2006; 21 (6): 837-48.


ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIalpha., Dong Z, Tomkinson AE., Nucleic Acids Res. January 1, 2006; 34 (20): 5721-279.              


Differential recruitment of DNA Ligase I and III to DNA repair sites., Mortusewicz O, Rothbauer U, Cardoso MC, Leonhardt H., Nucleic Acids Res. January 1, 2006; 34 (12): 3523-32.                  


Translocation of XRCC1 and DNA ligase IIIalpha from centrosomes to chromosomes in response to DNA damage in mitotic human cells., Okano S, Lan L, Tomkinson AE, Yasui A., Nucleic Acids Res. January 12, 2005; 33 (1): 422-9.          


XRCC1-DNA polymerase beta interaction is required for efficient base excision repair., Dianova II, Sleeth KM, Allinson SL, Parsons JL, Breslin C, Caldecott KW, Dianov GL., Nucleic Acids Res. May 11, 2004; 32 (8): 2550-5.


Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair., Leppard JB, Dong Z, Mackey ZB, Tomkinson AE., Mol Cell Biol. August 1, 2003; 23 (16): 5919-27.


Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1., Schreiber V, Amé JC, Dollé P, Schultz I, Rinaldi B, Fraulob V, Ménissier-de Murcia J, de Murcia G., J Biol Chem. June 21, 2002; 277 (25): 23028-36.


XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair., Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, Weinfeld M, Caldecott KW., Cell. January 12, 2001; 104 (1): 107-17.


Mitochondrial DNA ligase III function is independent of Xrcc1., Lakshmipathy U, Campbell C., Nucleic Acids Res. October 15, 2000; 28 (20): 3880-6.


An exonic splicing silencer in the testes-specific DNA ligase III beta exon., Chew SL, Baginsky L, Eperon IC., Nucleic Acids Res. January 15, 2000; 28 (2): 402-10.


A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair., Taylor RM, Moore DJ, Whitehouse J, Johnson P, Caldecott KW., Mol Cell Biol. January 1, 2000; 20 (2): 735-40.


The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication., Barrows LR, Holden JA, Anderson M, D'Arpa P., Mutat Res. August 7, 1998; 408 (2): 103-10.


XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage., Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G., Mol Cell Biol. June 1, 1998; 18 (6): 3563-71.


Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair., Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G., J Biol Chem. September 19, 1997; 272 (38): 23970-5.


An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination., Mackey ZB, Ramos W, Levin DS, Walter CA, McCarrey JR, Tomkinson AE., Mol Cell Biol. February 1, 1997; 17 (2): 989-98.


XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro., Caldecott KW, Aoufouchi S, Johnson P, Shall S., Nucleic Acids Res. November 15, 1996; 24 (22): 4387-94.


DNA ligase IV from HeLa cell nuclei., Robins P, Lindahl T., J Med Genet. September 27, 1996; 271 (39): 24257-61.


Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells., Caldecott KW, Tucker JD, Stanker LH, Thompson LH., Nucleic Acids Res. December 11, 1995; 23 (23): 4836-43.


Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination., Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, Wang RP, Shell BK, Nash RA, Schär P., Mol Cell Biol. June 1, 1995; 15 (6): 3206-16.

Page(s): 1 2 Next