Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (114) GO Terms (3) Nucleotides (247) Proteins (43) Interactants (652) Wiki
XB-GENEPAGE-5755356

Papers associated with slc2a1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Validation of the hexose transporter of Plasmodium falciparum as a novel drug target., Joet T, Eckstein-Ludwig U, Morin C, Krishna S., Proc Natl Acad Sci U S A. June 24, 2003; 100 (13): 7476-9.


Synthesis and biologic evaluation of (11)c-methyl-d-glucoside, a tracer of the sodium-dependent glucose transporters., Bormans GM, Van Oosterwyck G, De Groot TJ, Veyhl M, Mortelmans L, Verbruggen AM, Koepsell H., J Nucl Med. July 1, 2003; 44 (7): 1075-81.


Downregulation of the Na(+)- D-glucose cotransporter SGLT1 by protein RS1 (RSC1A1) is dependent on dynamin and protein kinase C., Veyhl M, Wagner CA, Gorboulev V, Schmitt BM, Lang F, Koepsell H., J Membr Biol. November 1, 2003; 196 (1): 71-81.


Functional consequences of an in vivo mutation in exon 10 of the human GLUT1 gene., Lange P, Gertsen E, Monden I, Klepper J, Keller K., FEBS Lett. December 4, 2003; 555 (2): 274-8.


Functional studies of threonine 310 mutations in Glut1: T310I is pathogenic, causing Glut1 deficiency., Wang D, Pascual JM, Iserovich P, Yang H, Ma L, Kuang K, Zuniga FA, Sun RP, Swaroop KM, Fischbarg J, De Vivo DC., J Biol Chem. December 5, 2003; 278 (49): 49015-21.


Cysteine-scanning mutagenesis of transmembrane segment 1 of glucose transporter GLUT1: extracellular accessibility of helix positions., Heinze M, Monden I, Keller K., Biochemistry. February 3, 2004; 43 (4): 931-6.


Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility., Mueckler M, Makepeace C., J Biol Chem. March 12, 2004; 279 (11): 10494-9.


Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter., Alisio A, Mueckler M., J Biol Chem. June 18, 2004; 279 (25): 26540-5.


Transmembrane segment 3 of the Glut1 glucose transporter is an outer helix., Mueckler M, Roach W, Makepeace C., J Biol Chem. November 5, 2004; 279 (45): 46876-81.


A structural basis for the acute effects of HIV protease inhibitors on GLUT4 intrinsic activity., Hertel J, Struthers H, Horj CB, Hruz PW., J Biol Chem. December 31, 2004; 279 (53): 55147-52.


6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways., Corpe CP, Lee JH, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M., J Biol Chem. February 18, 2005; 280 (7): 5211-20.


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the Glut1 glucose transporter., Mueckler M, Makepeace C., J Biol Chem. November 25, 2005; 280 (47): 39562-8.


SGK1 kinase upregulates GLUT1 activity and plasma membrane expression., Palmada M, Boehmer C, Akel A, Rajamanickam J, Jeyaraj S, Keller K, Lang F., Diabetes. February 1, 2006; 55 (2): 421-7.


Probing structure/affinity relationships for the Plasmodium falciparum hexose transporter with glucose derivatives., Fayolle M, Ionita M, Krishna S, Morin C, Patel AP., Bioorg Med Chem Lett. March 1, 2006; 16 (5): 1267-71.


Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism., Mueckler M, Makepeace C., J Biol Chem. December 1, 2006; 281 (48): 36993-8.


Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid., Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP., Biochem Biophys Res Commun. December 15, 2006; 351 (2): 424-30.


Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis., Suzawa K, Yukita A, Hayata T, Goto T, Danno H, Michiue T, Cho KW, Asashima M., Int J Dev Biol. January 1, 2007; 51 (3): 183-90.              


Interaction of O-(undec-10-en)-yl-D-glucose derivatives with the Plasmodium falciparum hexose transporter (PfHT)., Ionita M, Krishna S, Léo PM, Morin C, Patel AP., Bioorg Med Chem Lett. September 1, 2007; 17 (17): 4934-7.


Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity., Mueckler M, Makepeace C., J Biol Chem. April 25, 2008; 283 (17): 11550-5.


GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak., Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, Margari L, Kamm C, Schneider SA, Huber SM, Pekrun A, Roebling R, Seebohm G, Koka S, Lang C, Kraft E, Blazevic D, Salvo-Vargas A, Fauler M, Mottaghy FM, Münchau A, Edwards MJ, Presicci A, Margari F, Gasser T, Lang F, Bhatia KP, Lehmann-Horn F, Lerche H., J Clin Invest. June 1, 2008; 118 (6): 2157-68.


Structural signatures and membrane helix 4 in GLUT1: inferences from human blood-brain glucose transport mutants., Pascual JM, Wang D, Yang R, Shi L, Yang H, De Vivo DC., J Biol Chem. June 13, 2008; 283 (24): 16732-42.


Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1., Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, Kempfle J, Wuttke TV, Weber Y, Lerche H, Afawi Z, Vandenberghe W, Korczyn AD, Berkovic SF, Ekstein D, Kivity S, Ryvlin P, Claes LR, Deprez L, Maljevic S, Vargas A, Van Dyck T, Goossens D, Del-Favero J, Van Laere K, De Jonghe P, Van Paesschen W., Brain. July 1, 2008; 131 (Pt 7): 1831-44.              


Identification, expression and characterisation of a Babesia bovis hexose transporter., Derbyshire ET, Franssen FJ, de Vries E, Morin C, Woodrow CJ, Krishna S, Staines HM., Mol Biochem Parasitol. October 1, 2008; 161 (2): 124-9.            


SLC2A9 is a high-capacity urate transporter in humans., Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C., PLoS Med. October 7, 2008; 5 (10): e197.          


Functional studies of the T295M mutation causing Glut1 deficiency: glucose efflux preferentially affected by T295M., Wang D, Yang H, Shi L, Ma L, Fujii T, Engelstad K, Pascual JM, De Vivo DC., Pediatr Res. November 1, 2008; 64 (5): 538-43.


Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis., Mueckler M, Makepeace C., Biochemistry. June 30, 2009; 48 (25): 5934-42.


Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues., Slavic K, Derbyshire ET, Naftalin RJ, Krishna S, Staines HM., Mol Biochem Parasitol. November 1, 2009; 168 (1): 113-6.  


Facilitative glucose transporter Glut1 is actively excluded from rod outer segments., Gospe SM, Baker SA, Arshavsky VY., J Cell Sci. November 1, 2010; 123 (Pt 21): 3639-44.      


Glut1 deficiency: inheritance pattern determined by haploinsufficiency., Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, De Vivo DC., Ann Neurol. December 1, 2010; 68 (6): 955-8.


The glucose transporter-2 (GLUT2) is a low affinity dehydroascorbic acid transporter., Mardones L, Ormazabal V, Romo X, Jaña C, Peña E, Vergara M, Zúñiga FA, Zúñiga FA., Biochem Biophys Res Commun. June 24, 2011; 410 (1): 7-12.


Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect., Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schüle R, Wuttke TV, Maljevic S, Liebrich J, Gasser T, Ludolph AC, Van Paesschen W, Schöls L, De Jonghe P, Auburger G, Lerche H., Neurology. September 6, 2011; 77 (10): 959-64.


Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome., Flatt JF, Guizouarn H, Burton NM, Borgese F, Tomlinson RJ, Forsyth RJ, Baldwin SA, Levinson BE, Quittet P, Aguilar-Martinez P, Delaunay J, Stewart GW, Bruce LJ., Blood. November 10, 2011; 118 (19): 5267-77.


Ligand-induced movements of inner transmembrane helices of Glut1 revealed by chemical cross-linking of di-cysteine mutants., Mueckler M, Makepeace C., PLoS One. January 1, 2012; 7 (2): e31412.            


Arsenic and antimony transporters in eukaryotes., Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R., Int J Mol Sci. January 1, 2012; 13 (3): 3527-3548.      


Water transport by glucose transporter type 3 expressed in Xenopus oocytes., Tomioka S., Neuroreport. January 4, 2012; 23 (1): 21-5.


GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy., Striano P, Weber YG, Toliat MR, Schubert J, Leu C, Chaimana R, Baulac S, Guerrero R, LeGuern E, Lehesjoki AE, Polvi A, Robbiano A, Serratosa JM, Guerrini R, Nürnberg P, Sander T, Zara F, Lerche H, Marini C, EPICURE Consortium., Neurology. February 21, 2012; 78 (8): 557-62.


Characterization of bovine glucose transporter 1 kinetics and substrate specificities in Xenopus oocytes., Bentley PA, Shao Y, Misra Y, Morielli AD, Zhao FQ., J Dairy Sci. March 1, 2012; 95 (3): 1188-97.


Glucose transporter 1 deficiency in the idiopathic generalized epilepsies., Arsov T, Mullen SA, Rogers S, Phillips AM, Lawrence KM, Damiano JA, Goldberg-Stern H, Afawi Z, Kivity S, Trager C, Petrou S, Berkovic SF, Scheffer IE., Ann Neurol. November 1, 2012; 72 (5): 807-15.


Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8., Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M., J Biol Chem. March 29, 2013; 288 (13): 9092-101.            


Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models., Cunningham P, Naftalin RJ., J Membr Biol. June 1, 2013; 246 (6): 495-511.


FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells., Kitaoka S, Morielli AD, Zhao FQ., PLoS One. June 4, 2013; 8 (6): e68475.              


The human sodium-dependent ascorbic acid transporters SLC23A1 and SLC23A2 do not mediate ascorbic acid release in the proximal renal epithelial cell., Eck P, Kwon O, Chen S, Mian O, Levine M., Physiol Rep. November 1, 2013; 1 (6): e00136.            


FGT-1 is the major glucose transporter in C. elegans and is central to aging pathways., Feng Y, Williams BG, Koumanov F, Wolstenholme AJ, Holman GD., Biochem J. December 1, 2013; 456 (2): 219-29.            


Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system., Clémençon B, Lüscher BP, Fine M, Baumann MU, Surbek DV, Bonny O, Hediger MA., PLoS One. January 1, 2014; 9 (10): e108852.                


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


On the origin and evolutionary history of NANOG., Scerbo P, Markov GV, Vivien C, Kodjabachian L, Demeneix B, Coen L, Girardot F., PLoS One. January 17, 2014; 9 (1): e85104.    


Cloning, characterization, and expression of glucose transporter 2 in the freeze-tolerant wood frog, Rana sylvatica., Rosendale AJ, Philip BN, Lee RE, Costanzo JP., Biochim Biophys Acta. June 1, 2014; 1840 (6): 1701-11.              


A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size., Vasiliu D, Clamons S, McDonough M, Rabe B, Saha M., PLoS One. January 1, 2015; 10 (3): e0118198.  


Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function., Jamali S, Klier M, Ames S, Barros LF, McKenna R, Deitmer JW, Becker HM., Sci Rep. January 12, 2015; 5 13605.              

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???