Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (75) GO Terms (5) Nucleotides (60) Proteins (19) Interactants (192) Wiki
XB-GENEPAGE-483154

Papers associated with tecta.2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis., McKeown CR, Sharma P, Sharipov HE, Shen W, Cline HT., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.   


Clonal relationships impact neuronal tuning within a phylogenetically ancient vertebrate brain structure., Muldal AM, Lillicrap TP, Richards BA, Akerman CJ., Curr Biol. August 18, 2014; 24 (16): 1929-33.   


A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms., Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M., Neurotherapeutics. January 1, 2015; 12 (1): 170-84.   


FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles., Faulkner RL, Wishard TJ, Thompson CK, Liu HH, Cline HT., eNeuro. January 1, 2015; 2 (1): e0055.   


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. March 16, 2015; 10 (3): e0120118.   


Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis., Okada M, Miller TC, Fu L, Shi YB., Endocrinology. September 1, 2015; 156 (9): 3381-93.   


Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum., Guo X, Ruan H, Li X, Qin L, Tao Y, Qi X, Gao J, Gan L, Duan S, Shen W., Front Cell Neurosci. September 23, 2015; 9 510.   


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT., Dev Biol. December 15, 2015; 408 (2): 269-91.   


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W., Front Cell Neurosci. May 6, 2016; 10 221.   


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC, Faulkner R, Cline HT., J Neurophysiol. November 1, 2016; 116 (5): 2281-2297.


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS, Liu Z, Pratt KG., Elife. November 23, 2016; 5   


Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity., Blackiston DJ, Vien K, Levin M., NPJ Regen Med. January 1, 2017; 2 8.   


Direct Regulation of Histidine Ammonia-Lyase 2 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cells., Luu N, Fu L, Fujimoto K, Shi YB, Shi YB., Endocrinology. April 1, 2017; 158 (4): 1022-1033.   


Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis., Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB, Shi YB., Endocrinology. June 1, 2017; 158 (6): 1985-1998.   


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH, McClatchy DB, Schiapparelli L, Shen W, Yates JR, Cline HT., Elife. February 7, 2018; 7   


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A, Minnich B., J Morphol. July 1, 2018; 279 (7): 950-969.   


N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo., Jin T, Peng G, Wu E, Mendiratta S, Elul T., Brain Res. October 15, 2018; 1697 34-44.   


Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors., Islam R, Prater CM, Harris BN, Carr JA., Gen Comp Endocrinol. October 1, 2019; 282 113214.


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR, Cline HT., Development. October 24, 2019; 146 (20):   


Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis., Shibata Y, Tanizaki Y, Shi YB, Shi YB., Cell Biosci. March 27, 2020; 10 46.   


Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis., Prater CM, Harris BN, Carr JA., Horm Behav. April 1, 2020; 120 104707.


Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles., Hiramoto M, Cline HT., STAR Protoc. January 8, 2021; 2 (1): 100252.   


Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes., Liu K, Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD., Neuroscience. July 15, 2021; 467 110-121.


Epigenetic regulation of GABAergic differentiation in the developing brain., Gao J, Luo Y, Lu Y, Wu X, Chen P, Zhang X, Han L, Qiu M, Shen W., Front Cell Neurosci. January 1, 2022; 16 988732.   


Thyroid Hormone Receptor α Controls the Hind Limb Metamorphosis by Regulating Cell Proliferation and Wnt Signaling Pathways in Xenopus tropicalis., Tanizaki Y, Shibata Y, Zhang H, Shi YB, Shi YB., Int J Mol Sci. January 22, 2022; 23 (3):   

???pagination.result.page??? ???pagination.result.prev??? 1 2